ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-02
    Description: The Geysers geothermal field is one of the most seismically active regions in northern California. Most of the events occur at shallow depths and are related to stress and hydrological perturbations due to energy production operations. To better understand the relationships between seismicity and operations, better source mechanism information is needed. Seismic moment tensors offer insight into the nature of equivalent forces causing the seismicity. Fifty-three M 〉3 events located at The Geysers geothermal field were selected from the University of California Berkeley Moment Tensor Catalog for analysis of seismic moment tensor solutions and associated uncertainties. Deviatoric and full moment tensor solutions were computed, and statistical tests were employed to assess solution stability, resolution, and significance. In this study, we examine several source models including double-couple (DC), pure isotropic (ISO; volumetric change), and volume-compensated linear vector dipole (CLVD) sources, as well as compound sources such as DC+CLVD, DC+ISO, and shear–tensile sources. In general, we find from a systematic approach toward characterizing uncertainties in moment tensor solutions that The Geysers earthquakes, as a population, deviate significantly from northern California seismicity in terms of apparent volumetric source terms and complexity. Online Material: Figures showing map of The Geysers with locations and deviatoric moment tensor solutions, distributions of isotropic parameter, K , for the 1992–2012 Berkeley Seismological Laboratory (BSL) catalog and studied events at The Geysers, and constrained moment tensor analysis of selected events. Catalogs of deviatoric and full moment tensor solutions.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-05
    Description: Estimates of magnitudes of large historical earthquakes are an essential input to and can seriously affect seismic-hazard estimates. The earthquake-intensity observations, modified Mercalli intensities (MMI), and assigned magnitudes M of the 1811–1812 New Madrid events have been reinterpreted several times in the last decade and have been a source of controversy in making seismic-hazard estimates in the central United States. Observations support the concept that the larger the earthquake, the greater the maximum-felt distance. For the same crustal attenuation and local soil conditions, magnitude should be the main influence on intensity values at large distances. We apply this concept by comparing the mean MMI at distances of 600–1200 km for each of the four largest New Madrid 1811–1812 earthquakes, the 1886 Charleston, South Carolina, earthquake, the 1929 M  7.2 Grand Banks earthquake, and the 2001 M  7.6 Bhuj, India, earthquake. We fit the intensity observations using the form MMI= A + C x dist–0.8 x log(dist) to better define intensity attenuation in eastern North America (ENA). The intensity attenuation in cratonic India differs from ENA and is corrected to ENA using both the above estimate and published intensity relations. We evaluate source, marine geophysical, Q , and stress-drop information, as well as a 1929 Milne–Shaw record at Chicago to confirm that the 1929 Grand Banks earthquake occurred in ENA crust. Our direct comparison of mean intensities beyond 600 km suggests M  7.5, 7.3, 7.7, and 6.9 for the three New Madrid 1811–1812 mainshocks and the largest aftershock and M  7.0 for the 1886 Charleston, South Carolina, earthquake, with an estimated uncertainty of 0.3 units at the 95% confidence level (based on a Monte Carlo analysis). Our mean New Madrid and Charleston mainshock magnitudes are similar to those of Bakun and Hopper (2004) and are much higher than those of Hough and Page (2011) for New Madrid. Online Material: Tables of mean modified Mercalli intensity for 800–1200 and 600–1000 km distance ranges, and figures of least-squares fit for all intensity measures used and for frequency-dependent Q in easternmost Canada.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-08
    Description: A new macroseismic intensity prediction equation is derived for the central and eastern United States and is used to estimate the magnitudes of the 1811–1812 New Madrid, Missouri, and 1886 Charleston, South Carolina, earthquakes. This work improves upon previous derivations of intensity prediction equations by including additional intensity data, correcting magnitudes in the intensity datasets to moment magnitude, and accounting for the spatial and temporal population distributions. The new relation leads to moment magnitude estimates for the New Madrid earthquakes that are toward the lower range of previous studies. Depending on the intensity dataset to which the new macroseismic intensity prediction equation is applied, mean estimates for the 16 December 1811, 23 January 1812, and 7 February 1812 mainshocks, and 16 December 1811 dawn aftershock range from 6.9 to 7.1, 6.8 to 7.1, 7.3 to 7.6, and 6.3 to 6.5, respectively. One-sigma uncertainties on any given estimate could be as high as 0.3–0.4 magnitude units. We also estimate a magnitude of 6.9±0.3 for the 1886 Charleston, South Carolina, earthquake. We find a greater range of magnitude estimates when also accounting for multiple macroseismic intensity prediction equations. The inability to accurately and precisely ascertain magnitude from intensities increases the uncertainty of the central United States earthquake hazard by nearly a factor of two. Relative to the 2008 national seismic hazard maps, our range of possible 1811–1812 New Madrid earthquake magnitudes increases the coefficient of variation of seismic hazard estimates for Memphis, Tennessee, by 35%–42% for ground motions expected to be exceeded with a 2% probability in 50 years and by 27%–35% for ground motions expected to be exceeded with a 10% probability in 50 years.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-12-01
    Description: We have developed a new three-dimensional seismic velocity model of the central United States (CUSVM) that includes the New Madrid Seismic Zone (NMSZ) and covers parts of Arkansas, Mississippi, Alabama, Illinois, Missouri, Kentucky, and Tennessee. The model represents a compilation of decades of crustal research consisting of seismic, aeromagnetic, and gravity profiles; geologic mapping; geophysical and geological borehole logs; and inversions of the regional seismic properties. The density, P - and S -wave velocities are synthesized in a stand-alone spatial database that can be queried to generate the required input for numerical seismic-wave propagation simulations. We test and calibrate the CUSVM by simulating ground motions of the 18 April 2008 M w  5.4 Mt. Carmel, Illinois, earthquake and comparing the results with observed records within the model area. The selected stations in the comparisons reflect different geological site conditions and cover distances ranging from 10 to 430 km from the epicenter. The results, based on a qualitative and quantitative goodness-of-fit (GOF) characterization, indicate that both within and outside the Mississippi Embayment the CUSVM reasonably reproduces: (1) the body and surface-wave arrival times and (2) the observed regional variations in ground-motion amplitude, cumulative energy, duration, and frequency content up to a frequency of 1.0 Hz. In addition, we discuss the probable structural causes for the ground-motion patterns in the central United States that we observed in the recorded motions of the 18 April Mt. Carmel earthquake. Online Material: Simulated and observed waveforms, and response spectral acceleration ground-motion prediction equation comparison.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-29
    Description: We present probabilistic and deterministic seismic and liquefaction hazard maps for the densely populated St. Louis metropolitan area that account for the expected effects of surficial geology on earthquake ground shaking. Hazard calculations were based on a map grid of 0.005°, or about every 500 m, and are thus higher in resolution than any earlier studies. To estimate ground motions at the surface of the model (e.g., site amplification), we used a new detailed near-surface shear-wave velocity model in a 1D equivalent-linear response analysis. When compared with the 2014 U.S. Geological Survey (USGS) National Seismic Hazard Model, which uses a uniform firm-rock-site condition, the new probabilistic seismic-hazard estimates document much more variability. Hazard levels for upland sites (consisting of bedrock and weathered bedrock overlain by loess-covered till and drift deposits), show up to twice the ground-motion values for peak ground acceleration (PGA), and similar ground-motion values for 1.0 s spectral acceleration (SA). Probabilistic ground-motion levels for lowland alluvial floodplain sites (generally the 20–40-m-thick modern Mississippi and Missouri River floodplain deposits overlying bedrock) exhibit up to twice the ground-motion levels for PGA, and up to three times the ground-motion levels for 1.0 s SA. Liquefaction probability curves were developed from available standard penetration test data assuming typical lowland and upland water table levels. A simplified liquefaction hazard map was created from the 5%-in-50-year probabilistic ground-shaking model. The liquefaction hazard ranges from low (〈40% of area expected to liquefy) in the uplands to severe (〉60% of area expected to liquefy) in the lowlands. Because many transportation routes, power and gas transmission lines, and population centers exist in or on the highly susceptible lowland alluvium, these areas in the St. Louis region are at significant potential risk from seismically induced liquefaction and associated ground deformation.
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-11-04
    Description: The largest recorded earthquake in Kansas occurred northeast of Milan on 12 November 2014 ( M w  4.9) in a region previously devoid of significant seismic activity. Applying multistation processing to data from local stations, we are able to detail the rupture process and rupture geometry of the mainshock, identify the causative fault plane, and delineate the expansion and extent of the subsequent seismic activity. The earthquake followed rapid increases of fluid injection by multiple wastewater injection wells in the vicinity of the fault. The source parameters and behavior of the Milan earthquake and foreshock–aftershock sequence are similar to characteristics of other earthquakes induced by wastewater injection into permeable formations overlying crystalline basement. This earthquake also provides an opportunity to test the empirical relation that uses felt area to estimate moment magnitude for historical earthquakes for Kansas.
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-01
    Description: We performed a suite of numerical simulations based on the 1811–1812 New Madrid seismic zone (NMSZ) earthquakes, which demonstrate the importance of 3D geologic structure and rupture directivity on the ground-motion response throughout a broad region of the central United States (CUS) for these events. Our simulation set consists of 20 hypothetical earthquakes located along two faults associated with the current seismicity trends in the NMSZ. The hypothetical scenarios range in magnitude from M  7.0 to 7.7 and consider various epicenters, slip distributions, and rupture characterization approaches. The low-frequency component of our simulations was computed deterministically up to a frequency of 1 Hz using a regional 3D seismic velocity model and was combined with higher-frequency motions calculated for a 1D medium to generate broadband synthetics (0–40 Hz in some cases). For strike-slip earthquakes located on the southwest–northeast-striking NMSZ axial arm of seismicity, our simulations show 2–10 s period energy channeling along the trend of the Reelfoot rift and focusing strong shaking northeast toward Paducah, Kentucky, and Evansville, Indiana, and southwest toward Little Rock, Arkansas. These waveguide effects are further accentuated by rupture directivity such that an event with a western epicenter creates strong amplification toward the northeast, whereas an eastern epicenter creates strong amplification toward the southwest. These effects are not as prevalent for simulations on the reverse-mechanism Reelfoot fault, and large peak ground velocities (〉40 cm/s) are typically confined to the near-source region along the up-dip projection of the fault. Nonetheless, these basin response and rupture directivity effects have a significant impact on the pattern and level of the estimated intensities, which leads to additional uncertainty not previously considered in magnitude estimates of the 1811–1812 sequence based only on historical reports. The region covered by our simulation domain encompasses a large portion of the CUS centered on the NMSZ, including several major metropolitan areas. Based on our simulations, more than eight million people living and working near the NMSZ would experience potentially damaging ground motion and modified Mercalli intensities ranging from VI to VIII if a repeat of the 1811–1812 earthquakes occurred today. Moreover, the duration of strong ground shaking in the greater Memphis metropolitan area could last from 30 to more than 60 s, depending on the magnitude and epicenter. Online Material: Tables of 1D velocity models used to generate the high-frequency synthetics, and figures of source models and peak ground motion synthetics.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-03-23
    Description: We estimate stress drops for earthquakes in and near the continental United States using the method of spectral ratios. The ratio of acceleration spectra between collocated earthquakes recorded at a given station removes the effects of path and recording site and yields source parameters including corner frequency for, and the ratio of seismic moment between, the two earthquakes. We determine stress drop from these parameters for 1121 earthquakes greater than M ~3 in 60 earthquake clusters. We find that the average Brune stress drop for the few eastern United States (EUS) tectonic mainshocks studied (2.6–36 MPa) is about three times greater than that of tectonic mainshocks in the western United States (WUS, 1.0–7.9 MPa) and five times greater than mainshocks potentially induced by wastewater injection in the central United States (CUS, 0.6–5.6 MPa). EUS events tend to be deeper thrusting events, whereas WUS events tend to be shallower but have a wide range of focal mechanisms. CUS events tend to be shallow with strike-slip to normal-faulting mechanisms. With the possible exception of CUS aftershocks, we find that differences in stress drop among all events can be taken into account, within one standard deviation of significance, by differences in the shear failure stress as outlined by Mohr–Coulomb theory. The shear failure stress is a function of vertical stress (or depth), the fault style (normal, strike slip, or reverse), and coefficient of friction (estimated here to be, on average, 0.64). After accounting for faulting style and depth dependence, we find that the average Brune stress drop is about 3% of the failure stress. These results suggest that high-frequency shaking hazard (〉~1 Hz) from shallow induced events and aftershocks is reduced to some extent by lower stress drop. However, the shallow hypocenters will increase hazard within several kilometers of the source. Electronic Supplement: Earthquake catalog.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2014-10-28
    Description: Estimates of magnitudes of large historical earthquakes are an essential input to and can seriously affect seismic-hazard estimates. The earthquake-intensity observations, modified Mercalli intensities (MMI), and assigned magnitudes M of the 1811-1812 New Madrid events have been reinterpreted several times in the last decade and have been a source of controversy in making seismic-hazard estimates in the central United States. Observations support the concept that the larger the earthquake, the greater the maximum-felt distance. For the same crustal attenuation and local soil conditions, magnitude should be the main influence on intensity values at large distances. We apply this concept by comparing the mean MMI at distances of 600-1200 km for each of the four largest New Madrid 1811-1812 earthquakes, the 1886 Charleston, South Carolina, earthquake, the 1929 M 7.2 Grand Banks earthquake, and the 2001 M 7.6 Bhuj, India, earthquake. We fit the intensity observations using the form MMI=A+CXdist-0.8Xlog(dist) to better define intensity attenuation in eastern North America (ENA). The intensity attenuation in cratonic India differs from ENA and is corrected to ENA using both the above estimate and published intensity relations. We evaluate source, marine geophysical, Q, and stress-drop information, as well as a 1929 Milne-Shaw record at Chicago to confirm that the 1929 Grand Banks earthquake occurred in ENA crust. Our direct comparison of mean intensities beyond 600 km suggests M 7.5, 7.3, 7.7, and 6.9 for the three New Madrid 1811-1812 mainshocks and the largest aftershock and M 7.0 for the 1886 Charleston, South Carolina, earthquake, with an estimated uncertainty of 0.3 units at the 95% confidence level (based on a Monte Carlo analysis). Our mean New Madrid and Charleston mainshock magnitudes are similar to those of Bakun and Hopper (2004) and are much higher than those of Hough and Page (2011) for New Madrid.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...