ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Comparative Biochemistry And Physiology 23 (1967), S. 233-242 
    ISSN: 0010-406X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 175 (2000), S. 149-160 
    ISSN: 1432-1424
    Keywords: Key words: Action potential — Gating model — Parameter identification — Reaction kinetics — Saw-tooth clamp — Voltage clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. Three types of electrical excitation have been investigated in the marine diatom Coscinodiscus wailesii. I: Depolarization-triggered, transient Cl− conductance, G Cl (t), followed by a transient, voltage-gated K+ conductance, G K , with an active state a and two inactive states i 1 and i 2 in series (a-i 1-i 2). II: Similar G Cl (t) as in Type-I but triggered by hyperpolarization; a subsequent increase of G K in this type is indicated but not analyzed in detail. III: Hyperpolarization-induced transient of a voltage-gated activity of an electrogenic pump (i 2-a-i 2), followed by G Cl (t) as in Type-II excitations. Type-III with pump gating is novel as such. G Cl (t) in all types seems to reflect the mechanism of InsP− 3 and Ca2+-mediated G Cl (t) in the action potential in Chara (Biskup et al., 1999). The nonlinear current-voltage-time relationships of Type-I and Type-III excitations have been recorded under voltage-clamp using single saw-tooth command voltages (voltage range: −200 to +50 mV, typical slope: ±1 Vs−1). Fits of the corresponding models to the experimental data provided numerical values of the model parameters. The statistical significance of these solutions is investigated. We suggest that the original function of electrical excitability of biological membranes is related to osmoregulation which has persisted through evolution in plants, whereas the familiar and osmotically neutral action potentials in animals have evolved later towards the novel function of rapid transmission of information over long distances.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...