ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 136 (1993), S. 85-96 
    ISSN: 1432-1424
    Keywords: Hypothalamus ; Neuron ; Inward rectifier ; Periodic activity ; GnRH neuron
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The mechanism of periodic gonadotropin-releasing hormone (GnRH) secretion from hypothalamic neurons is difficult to elucidate due to the diffuse distribution of GnRH neurons and the complex interaction of neuronal inputs onto them. Recent use of transgenic techniques allowed construction of an immortalized GnRH neuronal cell line (GT1), which has neuronal markers and secretes GnRH in a periodic fashion. Using the patch-clamp recording technique in the whole-cell and nystatin perforated-patch configuration, the present experiments show that this cell line expressed a tetrodotoxin-sensitive Na channel, two types of Ca channels, three types of outward K channels and a K inward rectifier. The latter current was suppressed in some cells by GnRH or somatostatin. In addition, a gamma-aminobutyric acid (GABA) response, presumably through GABAA receptors, is recorded. In long-term current-clamp recordings, spontaneous depolarizing activity was found to increase, and then decrease, between 20–35 min after removal of the cells from serum- and steroid-containing medium. In some cases, more than one cycle of activity was seen. Under voltage clamp, an inward current was recorded at similar times, with reversal at about −15 mV. Thus, two mechanisms of cell interaction, GABAA responses and feedback through GnRH responses, and one mechanism of endogenous periodic electrical activity were observed in these cells, which could synchronize periodic GnRH release.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 107 (1989), S. 179-188 
    ISSN: 1432-1424
    Keywords: stretch-activated channel ; calcium ; oocyte ; development ; patch clamp ; tunicate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Cell-attached patch clamp recordings from unfertilized oocytes of the ascidianBoltenia villosa reveal an ion channel which is activated by mechanical deformation of the membrane. These channels are seen when suction is applied to the patch pipette, but not in the absence of suction or during voltage steps. The estimated density of these stretch-activated channels is about 1.5/μm2, a figure equal to or greater than the density of known voltage-dependent channels in the oocyte. Ion substitution experiments done with combined whole-cell and attached patch recording, so absolute potentials are known, indicate that the channel passes Na+, Ca2+ and K+, but not Cl−. The channel has at least two open and two closed states, with the rate constant that leaves the longer-lived closed state being the primary site of stretch sensitivity. External Ca2+ concentration affects channel kinetics: at low calcium levels, long openings predominate, whereas at high calcium virtually all openings are to the short-lived open state. In multiple channel patches, the response to a step change in suction is highly phasic, with channel open probability decreasing over several hundred milliseconds to a nonzero steady-state level after an initial rapid increase. This channel may play a role in the physiological response of cells of the early embryo to the membrane strains associated with morphogenetic events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 114 (1990), S. 231-243 
    ISSN: 1432-1424
    Keywords: oocyte ; calcium channel ; single channel ; development ; tunicate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Whole-cell and single-channel patch-clamp experiments were performed on unfertilized oocytes of the ascidianCiona intestinalis to investigate the properties of two voltage-dependent Ca2+ currents found in this cell. The peak of the low threshold current (channel I) occurred at −20 mV, the peak of the high-threshold current (channel II) at +20 mV. The two currents could be distinguished by voltage dependence, kinetics of inactivation and ion selectivity. During large depolarizing voltage pulses, a transient outward current was recorded which appeared to be due to potassium efflux through channel II. When the external concentrations of Ca2+ and Mg2+ were reduced sufficiently, large inward Na currents flowed through both channels I and II. Using divalent-free solutions in cell-attached patch recordings, single-channel currents representing Na influx through channels I and II were recorded. The two types of unitary events could be distinguished on the basis of open time (channel I longer) and conductance (channel I smaller). Blocking events during changel I openings were recorded when micromolar concentrations of Ca2+ or Mg2+ were added to the patch pipette solutions. Slopes of the blocking rate constantvs. concentration gave binding constants of 6.4×106 m −1 sec−1 for Mg2+ and 4.5×108 m −1 sec−1 for Ca2+. The Ca2+ block was somewhat relieved at negative potentials, whereas the Mg2+ block was not, suggesting that Ca2+, but not Mg2+, can exit from the binding site toward the cell interior.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1985-12-01
    Print ISSN: 0012-1606
    Electronic ISSN: 1095-564X
    Topics: Biology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...