ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft was conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to (1) assess the effects of lift-fan propulsion system design features on aircraft control during transition and vertical flight including integration of lift fan/lift/cruise engine/aerodynamic controls and lift fan/lift/cruise engine dynamic response, (2) evaluate pilot-vehicle interface with the control system and head-up display including control modes for low-speed operational tasks and control mode/display integration, and (3) conduct operational evaluations of this configuration during takeoff, transition, and landing similar to those carried out previously by the Ames team for the mixed-flow, vectored thrust, and augmentor-ejector concepts. Based on results of the simulation, preliminary assessments of acceptable and borderline lift-fan and lift/cruise engine thrust response characteristics were obtained. Maximum pitch, roll, and yaw control power used during transition, hover, and vertical landing were documented. Control and display mode options were assessed for their compatibility with a range of land-based and shipboard operations from takeoff to cruise through transition back to hover and vertical landing. Flying qualities were established for candidate control modes and displays for instrument approaches and vertical landings aboard an LPH assault ship and DD-963 destroyer. Test pilot and engineer teams from the Naval Air Warfare Center, Boeing, Lockheed, McDonnell Douglas, and the British Defence Research Agency participated in the program.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TM-110365 , NAS 1.15:110365 , A-950090 , NIPS-95-06261
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for demanding vertical landing tasks aboard ship and in confined land-based sites.
    Keywords: Aerodynamics
    Type: NASA-TP-3607 , NAS 1.60:3607 , A-961333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-TM-108866 , A-950048 , NAS 1.15:108866
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Using a calibrated Rolls-Royce Pegasus engine and existing aircraft instrumentation and pressure taps, total and individual nozzle reaction control system (RCS) bleed flow rates have been measured on a YAV-8B Harrier during typical short takeoff, transition, hover, and vertical landing maneuvers. RCS thrust forces were calculated from RCS nozzle total pressure measurements, and control power was determined from the moments produced by these thrusts and the aircraft's moments of inertia. These data document the characteristics of the YAV-8B RCS with its basic stability augmentation system (SAS) engaged. Advanced control system designs for the YAV-8B can be compared to the original SAS based on the total bleed use and the percentage of available bleed used. In addition, the peak and mean values of the bleed and control power data can be used for sizing the reaction controls for a future short takeoff and vertical landing (STOVL) aircraft.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TM-104021 , A-93080 , NAS 1.15:104021
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: NTX Research Staion: NASA research assets embedded in an interesting operational air transport environment. Seven personnel (2 civil servants, 5 contractors). ARTCC, TRACON, Towers, 3 air carrier AOCs(American, Eagle and Southwest), and 2 major airports all within 12 miles. Supports NASA Airspace Systems Program with research products at all levels (fundamental to system level). NTX Laboratory: 5000 sq ft purpose-built, dedicated, air traffic management research facility. Established data links to ARTCC, TRACON, Towers, air carriers, airport and NASA facilities. Re-configurable computer labs, dedicated radio tower, state-of-the-art equipment.
    Keywords: Research and Support Facilities (Air)
    Type: ARC-E-DAA-TN-5251 , North Texas Aviation Forum; May 17, 2012; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Using a calibrated Rolls-Royce Pegasus engine, total Reaction Control System (RCS) bleed flow rates have been measured on a YAV-8B Harrier during typical short takeoff, transition, hover and vertical landing maneuvers. Using existing aircraft instrumentation and pressure taps located in the RCS ducts, bleed flow rates at each RCS valve were also measured directly during flight and ground tests. These data were compared with the calibrated engine data and with the RCS part of a YAV-8B mathematical model used in piloted simulation at NASA Ames Research Center. Areas of disagreement were small, being confined to the estimation of closed RCS valve leakages and the modeling of the RCS butterfly valve pressure losses.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AIAA PAPER 92-4232 , ; 25 p.|AIAA, Aircraft Design Systems Meeting; Aug 24, 1992 - Aug 26, 1992; Hilton Head Island, SC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: This NASA special publication presents a general overview of the flight research that has been conducted at Ames Research Center over the last 57 years. Icing research, transonic model testing, aerodynamics, variable stability aircraft, boundary layer control, short takeoff and landing (STOL), vertical/ short takeoff and landing (V/STOL) and rotorcraft research are among the major topics of interest discussed. Flying qualities, stability and control, performance evaluations, gunsight tracking and guidance and control displays research are also presented. An epilogue is included which presents the significant contributions that came about as a result of research and development conducted at Ames.
    Keywords: General
    Type: NASA/SP-1998-3300 , NAS 1.21:3300
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...