ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 30 (1993), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 〈list xml:id="l1" style="custom"〉1 The accrual of organic matter, chlorophyll a and bacteria, and the activities of various extracellular enzymes were studied during biofilm formation on River Red Gum (Eucalyptus camaldulensis) wood submerged in two temperate Australian billabongs for 24 weeks over summer and winter of 1989–90.2 Peak organic matter content of the biofilm ranged from 0.7 to 3.3mg AFDW cm−2, chlorophyll a content from 1.3 to 4. 2μg cm−2 and bacterial abundance from 18 × 106 to 94 × 106 cells cm−2. Most variation in organic matter content, chlorophyll a content and bacterial abundance in the biofilms couid be attributed to the duration of immersion (28–48% of variation) and to the interaction between site and submergence period (11–12%). Differences between sites and between seasons were less important in explaining total variation.3 Alkaline phosphatase, aminopeptidase and [3-D-glucosidase activities, determined per unit substratum surface area, were up to 138 ± 26 nmol cm−2h−1, 113 ± 1 nmol cm−2h−1 and 9.3 ± 2.2 nmol cm−2h−1, respectively. Activities of these three enzymes determined per unit organic biomass were up to 203 ± 25, 157 ± 13, and 16 ± 2.1 nmol mg1 AFDW h−1 respectively. Enzyme activities expressed on an area- or biomass-specific basis responded differently to the effects of season, site and duration of substratum exposure.4 Few consistent relationships could be established between the activity of a given enzyme system and the activity of other enzymes, nor with the various biomass parameters, such as total organic matter content, chlorophyll a content or bacterial abundance.5 We suggest that submerged wood of the River Red Gum is an important site for biofilm development in lentic systems in south-eastern Australia, and thus as a food resource for grazing invertebrates and for transformations of various nutrients and organic matter.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 27 (1992), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. We examined the temporal (seasonal and diel) and spatial variation in methane flux from sediments of a billabong in south-eastern Australia, and related it to variations in the rate of organic matter decay, concentration of interstitial metabolites, and sediment redox.2. Total gas ebullition ranged from 〈2 to 〉59mlm−2h−1, and was highest in the summer months when water temperatures were 〉25°C. These rates are equivalent to carbon fluxes of about 16–30gC—CH4m−2yr−1. Ebullition was greater from unvegetated sediments than from sediments colonized by the emergent macrophyte Eleockaris sphacelata, R, Br. or the submerged macrophyte Vallisneria gigantea Graeb. There were no consistent differences in the rate of ebullition over the day and the night.3. Methane accounted for about 42–45% of total sediment gas in the vegetated sediments, but about 60% in the unvegetated sediments. These ratios did not vary greatly throughout the year. Carbon dioxide was a minor component of sediment gas, usually comprising 〈5% of the total. Carbon dioxide contents were highest in summer, especially in unvegetated and E. sphacelata beds.4. In vitro methanogenesis ranged from 3 ± 0.9 to 106 ± 30 nmol g(dry weight)−1 h−1, being highest in summer and lowest in winter. Added acetate (5mM) increased the rate of methanogenesis by up to 10-fold, with the effect being greater in summer than winter. Generally, added acetate had least effect in E. sphacelata sediments. The maximum rate of in vitro methanogenesis with added acetate was 243 ± 57 nmolg(dry weight)−1 h−1.5. Ebullition was highly correlated with the rate of in vitro methanogenesis, with a rime lag of about 4 weeks. About 35–60% of benthic in vitro methanogenesis could be accounted for by ebullitive loss: the remainder was presumably lost via diffusion, flux through emergent plants or by oxidation. The rate of organic-matter degradation, assessed with amylopectin azure, varied throughout the year, but there was no clear relationship between ebullition and organic-matter decay.6. Concentrations of interstitial ammonium, which also varied seasonally, ranged from 1 ± 0.2 to 13 ± 1 mgNl−1. There was no clear relationship between ebullition rates and ammonium concentrations, Redox potential was most positive in the E. sphacelata sediments, but there was little consistent difference in the redox potential of V. gigantea and unvegetated sediments. Redox potential appeared not to be a controlling factor in methane release.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 26 (1991), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: SUMMARY. 〈list xml:id="l1" style="custom"〉1We examined the effects of an emergent macrophyte (Eleocharis sphacelata R. Br., Cyperaceae) and a submerged macrophyte (Vallisneria gigantea Graeb., Hydrocharitaceae) on the biogeochemistry of the sediments of a billabong in south-eastern Australia.2Sediments from an E. sphacelata bed had significantly lower concentrations of exchangeable phosphorus than did sediments from a nearby bare area or a V. gigantea bed, but neither macrophyte had a measureable effect on their sediment's exchangeable ammonium content.3The redox potential in the upper 10cm of E. sphacelata sediments was about 100 mV higher than that of bare sediments, or of sediments colonized by V. gigantea.4There were few consistent differences between vegetated and bare sediments in terms of the activity of extracellular enzymes, such as α-amylase, protease, β-d glucosidase, lipase or alkaline phosphatase. Rates of alkaline phosphatase activity (235–306μmol (g dry wt)−1 day−1) were markedly higher than those commonly reported for sediments or soils.5Rates of gas release were higher from bare sediments (21–93 ml m−2 h−1) than from E. sphacelata or V. gigantea sediments (17–23 and 21-24ml m−2 h−1, respectively). Gas bubbles consisted mainly of methane (26–66%) and nitrogen (15–68%). Rates of methane ebullition varied from 5 to 60ml m−2 h−1.6 In-vitro methanogenesis was most rapid in samples of the upper flocculent sediment. Methanogenesis was slower in V. gigantea sediments than in bare area or E. sphacelata sediments, but was markedly accelerated by additions of acetate and/or H2/CO2 in all sites.7Profiles of total extractable fatty acids and phospholipid fatty acids demonstrated that material derived from higher plants dominated the sediment organic matter in all sites. Bacteria were also a significant component of sediment organic matter, as fatty acids for which bacteria can be assumed the sole source accounted for 18–30% of total fatty acid content. Biomarkers for sulphate-reducing bacteria (Desulfobacter spp.) were detected, and for type II methanotrophic bacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Lakes & reservoirs 3 (1998), S. 0 
    ISSN: 1440-1770
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 18 (1995), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract: Sediment oxygen demands and water-atmosphere methane emissions of a highly productive, freshwater wetland on the floodplain of the River Murray in south-eastern Australia were quantified over a 14 month period in 1993–1994. Total sediment oxygen demands ranged from 1.3 to 3.3 mmol m−2 h−1, of which 〈 3 to 90% was due to chemical oxygen demand. Methane emissions ranged from 〈 0.01 mmol m−2 h−1 in winter to 2.75 mmol m−2 h−1 in summer. Methanogenesis accounted for at least 60% of the combined aerobic and methanogenic carbon flux in sediments from Eleocharis sphacelata beds, and at least 30% and 40% of the combined flux in sediments from Myriophyllum sp. beds and Vallisneria gigantea beds, respectively. In vitro incubations, using additions of sulfate and of molybdate, failed to indicate unequivocally competition for substrates between sulfate-reducing and methanogenic bacteria. However, in vitro methanogenesis was strongly inhibited by nitrate, suggesting an interaction between benthic methanogens and denitrifying or other nitrate-reducing bacteria. Fe3+ decreased in vitro methanogenesis by 16–49% during January, February and March 1994; oxidation of organic matter at the expense of the reduction of ferric ions could be a significant route for detritus processing in Eleocharis-bed sediments in the warmer months. Methanogenesis was increased consistently by additions of some low molecular weight substrates, such as acetate, but not by others, such as methanol, propionate and trimethylamine. Complex polymeric substrates, such as cellulose, starch and aquatic plant matter, increased in vitro methanogenesis rapidly and markedly. Despite this, no relationship between methane emissions and benthic cellulase activity was observed in the field. Methanogenesis was strongly temperature dependent, being maximal at 30 to 40°C and minimal at 5°C, thereby explaining the strong seasonality observed in methane emissions in situ.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: Food webs ; Billabongs ; Stable isotope analysis ; Macrophytes ; Invertebrates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We used the stable isotopes of carbon and nitrogen to examine the food webs of three small flood-plain lakes (billabongs) in south-eastern Australia. With few exceptions, stable carbon isotope analysis could not be used to discriminate among the conspicuous potential sources of fringing, emergent or floating vegetation or benthic detritus. These primary sources showed little spatial or temporal variation in δ13C values, with means ranging from-28.5 to-26.8‰ in spring and-29.1 to-25.4‰ in late summer. Submerged vegetation had similar δ13C values to the above sources in spring but showed greater spatial variation and were less 13C-depleted, considerably so in some species, in late summer. Epiphytes and algae were 13C-depleted in spring compared with the other primary sources but became more 13C-enriched in late summer. Mean δ13C values for primary and secondary consumers were not only far more variable (-37.4 to-22.7‰) but in general were more negative than the potential food sources, particularly in spring. Using the combined information from stable carbon and nitrogen isotope analysis, we could narrow down the list of potential primary sources driving food webs in these billabongs. The freshwater crayfish (Cherax) was one of the few taxa that appeared to obtain its biomass carbon from detrital material. Gastropods and leptocerid caddis larvae on emergent or submerged vegetation obtained a mixture of carbon from epiphytes and macrophytes; in both taxa, epiphytes contributed more to biomass carbon than did the macrophytes. However, other common grazers and collector/gatherers sampled from macrophytes, e.g. baetid mayflies, chironomid larvae and atyid shrimps, were often too 13C-depleted even to have derived their biomass carbon solely from epiphytes. Many other primary consumers, including zooplankton, and mussels (Velesunio), and most of the secondary consumers, including water mites (Hydracarina), phantom midge larvae (Chaoborus) and fish, were also 13C-depleted. The enormous biomass of littoral and fringing vegetation could contribute to metazoan food webs in these billabongs only if an additional highly 13C-depleted source was consumed simultaneously. Methane released from billabong sediments could provide such a 13C-depleted carbon source that is re-introduced into metazoan food webs via the consumption of methanotrophic bacteria. Alternatively, food webs in these water bodies are largely driven by an unknown and inconspicuous 13C-depleted primary producer, such as planktonic Chlorophyta.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5117
    Keywords: decomposition ; greenhouse gas ; sediments ; water regime
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Four approaches were used to assess the effect ofinundation on methane emissions from floodplainwetlands in Victoria, Australia: (i) fieldobservations following natural rainfall events; (ii)experimental manipulation of water levels in smallfloodplain depressions; (iii) experimentalmanipulation of water levels in replicated mesocosms;and (iv) in vitro incubation of floodplainsediment under laboratory conditions. Raftery'sSwamp, a large (150 ha) wetland on the floodplain ofthe Goulburn River, became inundated in June 1993following autumn-winter rainfall. Methane emissionspeaked (1.7 ± 0.05 mmol m-2 h-1) somesix months later, and the methane content of sedimentgas bubbles reached 59% v/v, even though the positivesediment redox potentials (176 to 243 mV) indicatedthat sediments were only moderately reducing. Threesmall (〈 1 ha) depressions on the floodplains of theRiver Murray and Kiewa River were inundated eithernaturally (by rain and/or overflow from nearby rivers)or artificially by flooding at specific times of year;emissions from these sites were usually negligibleafter flooding in autumn or winter. In contrast, theonset of methane emission was very rapid (within 3 to6 days) after the depressions had been flooded insummer, and the methane content of sediment gasbubbles could then reach 36% v/v. At their peak,emissions from the ephemeral wetlands were similar topeak emissions from permanent wetlands insouth-eastern Australia. Emissions from replicatedwetland mesocosms (4.5 m diameter, 0.9 m deep) werealways very small (〈0.2 mmol m-2 h-1),regardless of time of flooding, water depths, orseason. In vitro incubation of wetland sedimentunder anaerobic conditions indicated a progressivedecrease in benthic methanogenesis with sedimentdesiccation and exposure to air. Ephemerallyinundated floodplain wetlands may be sites ofsignificant methane emission, especially over thesummer months. Moreover, the survival and rapidreactivation of methanogenic archaea after prolongeddrying of wetland sediments suggests thatmethanogenesis is possible even from re-wettedfloodplain environments that had earlier experiencedan extended dry phase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5117
    Keywords: bacteria ; microscopy ; periphyton ; River Red Gum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Biofilms were allowed to develop on wooden slides of the River Red Gum (Eucalyptus camaldulensis Dehnh., Myrtaceae) submerged in two billabongs of south-eastern Australia. The slides were placed in the photic zone and the aphotic zone, and the biofilms sampled after eight week's growth over the summer of 1989–1990 and winter of 1990. Bacterial numbers, estimated with epifluorescence microscopy, ranged from 4–78 × 106 cells cm−2. Bacteria were more abundant in the photic zone than the aphotic zone, and more abundant in summer than winter. Fewer than 0.5% of the bacteria could be cultivated on nutrient agar plates. Concentrations of phospholipids ranged from 8–79 ng cm−2, which corresponded to bacterial abundances of 2–17 × 106 cells cm−2. Fifty five phospholipid fatty acids (PLFA) were identified, of which 16:0 (13–29% of total PFLA) was the most common. Other abundant PFLA included 16:1ω7c (6–28%), 18:2ω6 (3–16%), 18:3ω3 (4–12%), 18:1ω9c (3–5%), 18:lω7c (5–11%) and 18:0 (2–8%). Minor PLFA included 14:0, i and a 15:0, 15:0, 16:lω5c, 16:1ω13c, 18:3ω6, 18:4ω3, 20:4ω6 and 20:5ω3. The PLFA profiles of the biofilms were quite different from those of the sediments and plankton. There was a clear distinction between the PLFA profiles of summer and winter biofilms, but less evidence for unequivocal site or light-regime effects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...