ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-07-25
    Description: Injuries and disorders affecting the knee joint are very common in athletes and older individuals. Passive and active vibration methods, such as acoustic emissions and modal analysis, are extensively used in both industry and the medical field to diagnose structural faults and disorders. To maximize the diagnostic potential of such vibration methods for knee injuries and disorders, a better understanding of the vibroacoustic characteristics of the knee must be developed. In this study, the linearity and vibration transmissibility of the human knee were investigated based on measurements collected on healthy subjects. Different subjects exhibit a substantially different transmissibility behavior due to variances in subject-specific knee structures. Moreover, the vibration behaviors of various subjects’ knees at different leg positions were compared. Variation in sagittal-plane knee angle alters the transmissibility of the joint, while the overall shape of the transmissibility diagrams remains similar. The results demonstrate that an adjusted stimulation signal at frequencies higher than 3 kHz has the potential to be employed in diagnostic applications that are related to knee joint health. This work can pave the way for future studies aimed at employing acoustic emission and modal analysis approaches for knee health monitoring outside of clinical settings, such as for field-deployable diagnostics.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-13
    Description: Sounds produced by the articulation of joints have been shown to contain information characteristic of underlying joint health, morphology, and loading. In this work, we explore the use of a novel form factor for non-invasively acquiring acoustic/vibrational signals from the knee joint: an instrumented glove with a fingertip-mounted accelerometer. We validated the glove-based approach by comparing it to conventional mounting techniques (tape and foam microphone pads) in an experimental framework previously shown to reliably alter healthy knee joint sounds (vertical leg press). Measurements from healthy subjects (N = 11) in this proof-of-concept study demonstrated a highly consistent, monotonic, and significant (p 〈 0.01) increase in low-frequency signal root-mean-squared (RMS) amplitude—a straightforward metric relating to joint grinding loudness—with increasing vertical load across all three techniques. This finding suggests that a glove-based approach is a suitable alternative for collecting joint sounds that eliminates the need for consumables like tape and the interface noise associated with them.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...