ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-15
    Description: To test if hydrogen incorporation by ionic diffusion can occur between a volatile-rich kimberlitic liquid and forsterite, results of high-pressure and high-temperature experiments using a piston-cylinder apparatus at 1200–1300 °C and 1 GPa for durations of 1 min, 5 h, and 23 h, are reported here. Kimberlitic liquid in the system CaO-MgO-Al 2 O 3 -SiO 2 -CO 2 -H 2 O and synthetic forsterite single crystals were chosen as a first simplification of the complex natural kimberlite composition. Unpolarized Fourier transform infrared spectroscopy was used to quantify the concentrations of OH in the crystallographically oriented forsterite. Scanning electron microscopy, electron backscattered diffraction, electron microprobe analyses, and transmission electron microscopy were performed to identify the run products. After 5 and 23 h, a forsterite overgrowth crystallized with the same orientation as the initial forsterite single crystal. The kimberlitic liquid has crystallized as micrometer-scale euhedral forsterite neocrystals with random crystallographic orientations, as well as a nanoscale aluminous phase and a calcic phase. Despite theoretical water-saturation of the system and long duration, none of the initial forsterite single crystals display signs of hydration such as hydrogen diffusion profile from the border toward the center of the crystal. Most likely, the presence of CO 2 in the system has lowered the H 2 O fugacity to such an extent that there is no significant hydration of the starting forsterite single crystal or its overgrowth. Also, the presence of CO 2 enhances rapid forsterite crystal growth. Forsterite growth rate is around 2 x 10 8 μm 3 /h at 1250 °C. These experimental results suggest a deep mantle origin of the high OH content found in natural mantle-derived xenoliths transported in kimberlites, as reported from the Kaapvaal craton. In agreement with previous studies, it also points out to the fact that significant hydration must take place in a CO 2 -poor environment.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-05-08
    Description: Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 x 10 –3 S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 x 10 –1 S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-02
    Description: Using large volume press, samples of bridgmanites (Bg) in equilibrium with both silicate melt and liquid Fe-alloy were synthesized to replicate the early period of core-mantle segregation and magma ocean crystallization. We observe that the Fe partition coefficient between Bg and silicate melt $$\left({D}_{\mathrm{Fe}}^{\mathrm{Bg}/\mathrm{melt}}\right)$$ varies strongly with the degree of partial melting (F). It is close to 1 at very low F and adopts a constant value of ~0.3 for F values above 10 wt%. In the context of a partially molten mantle, a larger F (closer to liquidus) should yield Fe-depleted Bg grains floating in the liquid mantle. In contrast, a low F (closer to solidus) should yield buoyant pockets of silicate melt in the dominantly solid mantle. We also determined the valence state of Fe in these Bg phases using X-ray absorption near-edge spectroscopy (XANES). Combining our results with all available data sets, we show a redox state of Fe in Bg more complex than generally accepted. Under the reducing oxygen fugacities $$\left({f}_{{\mathrm{O}}_{2}}\right)$$ of this study ranging from IW-1.5 and IW-2, the measured Fe 3+ content of Bg is found moderate (Fe 3+ /Fe = 21 ± 4%) and weakly correlated with Al content. When $${f}_{{\mathrm{O}}_{2}}$$ is comprised between IW-1 and IW, this ratio is correlated with both Al content and oxygen fugacity. When $${f}_{{\mathrm{O}}_{2}}$$ remains between IW and Re/ReO 2 buffers, Fe 3+ /Fe ratio becomes independent of $${f}_{{\mathrm{O}}_{2}}$$ and exclusively correlated with Al content. Due to the incompatibility of Fe in Bg and the variability of its partition coefficient with the degree of melting, fractional crystallization of the magma ocean can lead to important chemical heterogeneities that will be attenuated ultimately with mantle stirring. In addition, the relatively low-Fe 3+ contents found in Bg (21%) at the reducing conditions (IW-2) prevailing during core segregation seem contradictory with the 50% previously suggested for the actual Earth’s lower mantle. This suggests the presence of 1.7 wt% Fe 3+ in the lower mantle, which reduces the difference with the value observed in the upper mantle (0.3 wt%). Reaching higher concentrations of trivalent Fe requires additional oxidation processes such as the late arrival of relatively oxidized material during the Earth accretion or interaction with oxidized subducting slabs.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-15
    Description: Crystals of ferrous and ferric iron-bearing hydrous wadsleyite have been synthesized at 1400 ºC and 12–13.5 GPa in a multi-anvil press. Crystal structures (atom positions, occupancies, and cell parameters) have been refined by single-crystal X-ray diffraction at ambient conditions. Assuming cation vacancies to be in the M3 site only, their concentration has been estimated from the unit-cell parameter b / a ratio. Total refined site Fe contents are consistent with microprobe chemical analysis. There appears to be up to 11% iron (presumably ferric) in the tetrahedral site, consistent with reduced silica content (〈1 Si per 4 O atoms) in the chemical analysis. Also the volume of the tetrahedron increases with increasing ferric iron content. Strong ordering of Fe in the octahedral sites is apparent in the order FeM3 ≥ FeM1 〉〉 FeM2. The presence of ferric iron in the mantle transition zone is expected to partition preferentially into wadsleyite and may expand the stability region of wadsleyite relative to olivine and ringwoodite. Also, the observation of tetrahedral ferric iron in these samples increases the likelihood that there is compositional continuity between wadsleyite and the spinelloid III phase field observed in the Mg-free system fayalite-magnetite.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-08-01
    Description: Wadsleyites with various iron contents were synthesized at ~12–14 GPa and 1400 °C under oxidizing and hydrous conditions in coexistence with enstatite. The samples were studied using micro-X-ray absorption near edge structure (XANES) and micro-Mössbauer spectroscopy to determine the ferric iron contents in polyphasic samples and secondary ion mass spectrometry (SIMS) to determine the water concentrations. XANES and Mössbauer analyses show that ferric iron content increases with increasing total iron content, and reaches a maximum of ~30% Fe 3+ /Fe total . Two XANES results were cross-checked by Mössbauer analysis and both methods are in reasonable agreement. The use of Fourier transform infrared spectroscopy reveals a new protonation scheme in wadsleyite, with a significant proportion of protons associated with the high-frequency band at 3611 cm –1 and a new band located at 3500 cm –1 . The intensity of these two bands is higher for Fe 3+ -rich wadsleyite. SIMS analyses show that water contents in wadsleyite vary from 4500 to 9400 ppm H 2 O by weight. Pyroxene water contents range from 790 to 1600 ppm wt H 2 O. The concentration of water in both phases decreases with increasing iron content. The partition coefficient of water between wadsleyite and pyroxene varies between 5 and 9 and increases with increasing Fe-number of wadsleyite [i.e., X Fe /(X Fe + X Mg ) x 100 ratio]. The divalent cation concentrations (i.e., Mg 2+ + Fe 2+ ), the Si as well as the H content in wadsleyite decrease with increasing Fe 3+ content, indicating an incorporation mechanism via substitution into the metal (Me = Mg 2+ and Fe 2+ ) and Si sites with a ratio of 5/3 for (Fe 3+ +H + ):Me and of 5/1 for (Fe 3+ +H + ):Si, similarly as in the dry system. Thus, coupled substitution of Fe 3+ and H + does not affect the incorporation mechanism of Fe 3+ , but does affect the location of H + , which is partly incorporated at tetrahedral edges forming [Fe Si '-(OH) o · ] X neutral defects substituting for Si. In this model 25% of the ferric iron occupies the tetrahedral sites.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-01-03
    Description: We have measured the water contents in forsterites and olivines synthesized in the multi-anvil press using confocal Raman spectroscopy. These samples were previously characterized for water contents by polarized FTIR and contain from 75 to 1300 ppm wt H 2 O. We find that both forsterite and olivine follow the same trend in water content vs. integrated Raman OH/Si intensity. In addition three synthetic enstatites also display a linear trend in water vs. OH/Si integrated Raman intensity but with a different slope than for olivine, indicating that the calibration for measuring water by Raman is matrix dependent. Three glasses of different compositions (two rhyolites and one basalt) and different water contents were also analyzed. Comparison with the forsterites and olivines shows that the Raman cross-section of these glasses is very different and their intensities must be corrected by different factors. Therefore, to be able to use glasses as external calibrants, prior knowledge of their behavior compared to well-characterized NAM standards is necessary.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-15
    Description: Hydrogen has been thought to be an important light element in Earth’s core due to possible siderophile behavior during core-mantle segregation. We reproduced planetary differentiation conditions using hydrogen contents of 450 to 1500 parts per million (ppm) in the silicate phase, pressures of 5 to 20 GPa, oxygen fugacity varying within IW-3.7 and IW-0.2 (0.2 to 3.7 log units lower than iron-wüstite buffer), and Fe alloys typical of planetary cores. We report hydrogen metal-silicate partition coefficients of ~2 x 10 –1 , up to two orders of magnitude lower than reported previously, and indicative of lithophile behavior. Our results imply H contents of ~60 ppm in the Earth and Martian cores. A simple water budget suggests that 90% of the water initially present in planetary building blocks was lost during planetary accretion. The retained water segregated preferentially into planetary mantles.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-01
    Print ISSN: 0009-2541
    Electronic ISSN: 1872-6836
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-17
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...