ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 26 (1991), S. 6715-6721 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The toughness behaviour of particulate-filled thermoplastics is determined by different failure mechanisms in the plastic zone and fracture process zone in front of the macrocrack such as particle-matrix debonding, shear processes or crazing and fracture of matrix fibrils. Theoretical expressions describing the critical strain causing microcrack initiation as well as the critical crack opening and the criticalJ integral value for unstable crack initiation are derived on the basis of a micromechanical analysis. Matrix properties, particle diameter, filler content and phase adhesion are taken into account. Critical particle contents and diameters caused by matrix morphology are discussed. Model calculations are compared with experimental results from acoustic emission analysis and dynamic fracture mechanics tests on PS, PVC and HDPE filled with CaCO3 or SiO2 particles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 27 (1992), S. 298-306 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The finite element method (FEM) and acoustic emission technique (AE) were applied to the micromechanics analysis of the failure process of composites with thermoplastic matrix materials. FEM calculations to local stress-strain distribution and the influence of very different intermediate layer properties are interpreted with regard to microscopic failure mechanisms in composite materials. The strongly differing AE behaviour of both chalk-filled Polyvinylchloride and high density polyethylene and short-glass-fibre reinforced polypropylene, polyamide, PBTP, SAN and ABS in tensile test experiments is demonstrated. Representative loading limits are derived from the nature and extent of the dominating failure mechanisms by comparison of theoretical and experimental results. The influence of critical strain, shear strength and fracture toughness properties of the modified matrix as well as the composite morphology and phase adhesion on significant deformation and failure stages is discussed. Finally some conclusions are drawn about a possible critical long-term strain of composites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 26 (1991), S. 6715-6721 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The toughness behaviour of particulate-filled thermoplastics is determined by different failure mechanisms in the plastic zone and fracture process zone in front of the macrocrack such as particle-matrix debonding, shear processes or crazing and fracture of matrix fibrils. Theoretical expressions describing the critical strain causing microcrack initiation as well as the critical crack opening and the criticalJ integral value for unstable crack initiation are derived on the basis of a micromechanical analysis. Matrix properties, particle diameter, filler content and phase adhesion are taken into account. Critical particle contents and diameters caused by matrix morphology are discussed. Model calculations are compared with experimental results from acoustic emission analysis and dynamic fracture mechanics tests on PS, PVC and HDPE filled with CaCO3 or SiO2 particles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Materialwissenschaft und Werkstofftechnik 21 (1990), S. 359-364 
    ISSN: 0933-5137
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents: Fracture Mechanic Analysis of Toughness Behaviour of Filled ThermoplasticsFor determination of toughness properties of filled thermoplastics the instrumented Charpy impact test has been used. The interpretation of impact load-deflection curves has been carried out with modern concepts of fracture mechanics. The change of toughness with increasing filler volume can be described for particle filled composites with the help of the J-integral in a suitable mode.The influence of filler volume, filler dimension and matrix type on critical J-integral and COD on the initiation of instable crack growth was tested.With the help of a micromechanical model to describe failure processes taking account of energy dissipative processes it is possible to calculate fracture mechanical behaviour of filled thermoplastics.
    Notes: Zur Ermittlung der bruchmechanischen Zähigkeitseigenschaften von gefüllten Thermoplasten wurde der instrumentierte Kerbschlagbiegeversuch verwendet. Die Interpretation der Schlagkraft-Durchbiegungs-Diagramme wurde mit modernen Konzepten der Bruchmechanik durchgeführt. Die Änderung der Zähigkeitseigenschaften mit zunehmendem Füllstoffvolumenanteil wird in geeigneter Weise durch das J-Integral-Konzept beschrieben. Es wurde der Einfluß des Füllstoffvolumenanteils, der Teilchengröße und der Matrixart auf das kritische J-Integral sowie die kritische Rißöffnung bei Einleitung des instabilen Rißwachstums untersucht. Anhand eines mikromechanischen Modells wird das Bruchverhalten von teilchengefüllten Thermoplasten theoretisch interpretiert, wobei energiedissipative Prozesse vor der Rißspitze einbezogen werden.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-01-01
    Print ISSN: 0022-2461
    Electronic ISSN: 1573-4803
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1992-01-01
    Print ISSN: 0022-2461
    Electronic ISSN: 1573-4803
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1991-12-01
    Print ISSN: 0022-2461
    Electronic ISSN: 1573-4803
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2000-06-01
    Print ISSN: 0266-3538
    Electronic ISSN: 1879-1050
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: The rationale and procedures used in the radiometric calibration and correction of Heat Capacity Mapping Mission (HCMM) data are presented. Instrument-level testing and calibration of the Heat Capacity Mapping Radiometer (HCMR) were performed by the sensor contractor ITT Aerospace/Optical Division. The principal results are included. From the instrumental characteristics and calibration data obtained during ITT acceptance tests, an algorithm for post-launch processing was developed. Integrated spacecraft-level sensor calibration was performed at Goddard Space Flight Center (GSFC) approximately two months before launch. This calibration provided an opportunity to validate the data calibration algorithm. Instrumental parameters and results of the validation are presented and the performances of the instrument and the data system after launch are examined with respect to the radiometric results. Anomalies and their consequences are discussed. Flight data indicates a loss in sensor sensitivity with time. The loss was shown to be recoverable by an outgassing procedure performed approximately 65 days after the infrared channel was turned on. It is planned to repeat this procedure periodically.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: E84-10153 , NASA-TM-80258 , NAS 1.15:80258
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...