ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
Years
  • 1
    Keywords: Biodiversity. ; Water. ; Hydrology. ; Freshwater ecology. ; Marine ecology. ; Biotic communities. ; Animal culture. ; Science Study and teaching. ; Biodiversity. ; Water. ; Freshwater and Marine Ecology. ; Ecosystems. ; Animal Science. ; Science Education.
    Description / Table of Contents: 1. Science for the Future: The Use of Citizen Science in Marine Research and Conservation -- 2. A Literature Review on Stakeholder Participation in Coastal and Marine Fisheries -- 3. Law and Policy Dimensions of Ocean Governance -- 4. Status and Threats to Marine Biodiversity in the Anthropocene -- 5. Challenges in Marine Restoration Ecology: How Techniques, Assessment Metrics and Ecosystem Valuation can lead to Improved Restoration Success -- 6. Understanding how Microplastics Affect Marine Biota on the Cellular Level is Important for Assessing Ecosystem Function – A Review -- 7. Chemical Biodiversity and Bioactivities of Saponins in Echinodermata with an Emphasis on Sea Cucumbers (Holothuroidea) -- 8. Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology -- 9. Sponges Revealed: A Synthesis of their Overlooked Ecological Functions within Aquatic Ecosystems -- 10. Theories, Vectors, and Computer Models – Marine Invasion Science in the Anthropocene -- 11. Benthos-Pelagos Interconnectivity: Antarctic Shelf Examples -- 12. Investigating the Land-Sea Transition Zone -- 13. Fisheries and Tourism: Social, Economic and Ecological Trade-offs in Coral Reef Systems -- 14. Progress in Microbial Ecology in Ice Covered Seas -- 15. Complex Interactions Between Aquatic Organisms and Their Chemical Environment Elucidated from Different Perspectives.
    Abstract: This open access book summarizes peer-reviewed articles and the abstracts of oral and poster presentations given during the YOUMARES 9 conference which took place in Oldenburg, Germany, in September 2018. The aims of this book are to summarize state-of-the-art knowledge in marine sciences and to inspire scientists of all career stages in the development of further research. These conferences are organized by and for young marine researchers. Qualified early-career researchers, who moderated topical sessions during the conference, contributed literature reviews on specific topics within their research field. .
    Type of Medium: Online Resource
    Pages: XIX, 370 p. 78 illus., 45 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030203894
    DDC: 333.95
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-09
    Keywords: ANT-XXIX/1; calanoid copepods; Life stage; MSN; Multiple opening/closing net; Number of specimens; Polarstern; Prosome, length; Prosome length, standard deviation; PS81; PS81/015-2; PS81/016-4; South Atlantic Ocean; Species; subtropical area; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1071 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-09
    Keywords: Acartia spp., c1-c3; Acartia spp., c4-c5; Acartia spp., female; Acartia spp., male; Aetidaeidae, c1-c3; Aetidaeidae, c4-c5; Aetidaeidae, female; Aetidaeidae, male; Aetidaeus arcuatus, c1-c3; Aetidaeus arcuatus, c4-c5; Aetidaeus arcuatus, female; Aetidaeus arcuatus, male; Aetidaeus armatus, c1-c3; Aetidaeus armatus, c4-c5; Aetidaeus armatus, female; Aetidaeus armatus, male; Aetidaeus australis, c1-c3; Aetidaeus australis, c4-c5; Aetidaeus australis, female; Aetidaeus australis, male; Aetidaeus giesbrechti, c1-c3; Aetidaeus giesbrechti, c4-c5; Aetidaeus giesbrechti, female; Aetidaeus giesbrechti, male; Aetidaeus spp., c1-c3; Aetidaeus spp., c4-c5; Aetidaeus spp., female; Aetidaeus spp., male; Aetideopsis carinata, c1-c3; Aetideopsis carinata, c4-c5; Aetideopsis carinata, female; Aetideopsis carinata, male; Aetideopsis spp., c1-c3; Aetideopsis spp., c4-c5; Aetideopsis spp., female; Aetideopsis spp., male; Amallothrix spp., c1-c3; Amallothrix spp., c4-c5; Amallothrix spp., female; Amallothrix spp., male; ANT-XXIX/1; Augaptilidae, c1-c3; Augaptilidae, c4-c5; Augaptilidae, female; Augaptilidae, male; Augaptilus anceps, c1-c3; Augaptilus anceps, c4-c5; Augaptilus anceps, female; Augaptilus anceps, male; Augaptilus longicaudatus, c1-c3; Augaptilus longicaudatus, c4-c5; Augaptilus longicaudatus, female; Augaptilus longicaudatus, male; Augaptilus megalurus, c1-c3; Augaptilus megalurus, c4-c5; Augaptilus megalurus, female; Augaptilus megalurus, male; Augaptilus spinifrons, c1-c3; Augaptilus spinifrons, c4-c5; Augaptilus spinifrons, female; Augaptilus spinifrons, male; Augaptilus spp., c1-c3; Augaptilus spp., c4-c5; Augaptilus spp., female; Augaptilus spp., male; Calanidae, c1-c3; Calanidae, c4-c5; Calanidae, female; Calanidae, male; Calanoides natalis, c1-c3; Calanoides natalis, c4-c5; Calanoides natalis, female; Calanoides natalis, male; Calocalanus spp., c1-c3; Calocalanus spp., c4-c5; Calocalanus spp., female; Calocalanus spp., male; Candacia bipinnata, c1-c3; Candacia bipinnata, c4-c5; Candacia bipinnata, female; Candacia bipinnata, male; Candacia curta, c1-c3; Candacia curta, c4-c5; Candacia curta, female; Candacia curta, male; Candacia elongata, c1-c3; Candacia elongata, c4-c5; Candacia elongata, female; Candacia elongata, male; Candacia ethiopica, c1-c3; Candacia ethiopica, c4-c5; Candacia ethiopica, female; Candacia ethiopica, male; Candacia longimana, c1-c3; Candacia longimana, c4-c5; Candacia longimana, female; Candacia longimana, male; Candacia spp., c1-c3; Candacia spp., c4-c5; Candacia spp., female; Candacia spp., male; Centropages bradyi, c1-c3; Centropages bradyi, c4-c5; Centropages bradyi, female; Centropages bradyi, male; Cephalophanes spp., c1-c3; Cephalophanes spp., c4-c5; Cephalophanes spp., female; Cephalophanes spp., male; Clausocalanus spp., c1-c3; Clausocalanus spp., c4-c5; Clausocalanus spp., female; Clausocalanus spp., male; Comment; Copepoda; Ctenocalanus spp., c1-c3; Ctenocalanus spp., c4-c5; Ctenocalanus spp., female; Ctenocalanus spp., male; Delibus spp., c1-c3; Delibus spp., c4-c5; Delibus spp., female; Delibus spp., male; Depth, bottom/max; Depth, top/min; DEPTH, water; Disco spp., c1-c3; Disco spp., c4-c5; Disco spp., female; Disco spp., male; Euaugaptilus spp., c1-c3; Euaugaptilus spp., c4-c5; Euaugaptilus spp., female; Euaugaptilus spp., male; Eucalanus hyalinus, c1-c3; Eucalanus hyalinus, c4-c5; Eucalanus hyalinus, female; Eucalanus hyalinus, male; Euchaeta marina, c1-c3; Euchaeta marina, c4-c5; Euchaeta marina, female; Euchaeta marina, male; Euchaeta spp., c1-c3; Euchaeta spp., c4-c5; Euchaeta spp., female; Euchaeta spp., male; Euchaetidae, c1-c3; Euchaetidae, c4-c5; Euchaetidae, female; Euchaetidae, male; Euchirella pulchra, c1-c3; Euchirella pulchra, c4-c5; Euchirella pulchra, female; Euchirella pulchra, male; Euchirella splendes, c1-c3; Euchirella splendes, c4-c5; Euchirella splendes, female; Euchirella splendes, male; Euchirella spp., c1-c3; Euchirella spp., c4-c5; Euchirella spp., female; Euchirella spp., male; Event label; Farrania frigida, c1-c3; Farrania frigida, c4-c5; Farrania frigida, female; Farrania frigida, male; Gaetanus brevicornis, c1-c3; Gaetanus brevicornis, c4-c5; Gaetanus brevicornis, female; Gaetanus brevicornis, male; Gaetanus cf. pileatus, c1-c3; Gaetanus cf. pileatus, c4-c5; Gaetanus cf. pileatus, female; Gaetanus cf. pileatus, male; Gaetanus kruppii, c1-c3; Gaetanus kruppii, c4-c5; Gaetanus kruppii, female; Gaetanus kruppii, male; Gaetanus spp., c1-c3; Gaetanus spp., c4-c5; Gaetanus spp., female; Gaetanus spp., male; Haloptilus cf. longicirrus, c1-c3; Haloptilus cf. longicirrus, c4-c5; Haloptilus cf. longicirrus, female; Haloptilus cf. longicirrus, male; Haloptilus cf. oxycephalus, c1-c3; Haloptilus cf. oxycephalus, c4-c5; Haloptilus cf. oxycephalus, female; Haloptilus cf. oxycephalus, male; Haloptilus spp., c1-c3; Haloptilus spp., c4-c5; Haloptilus spp., female; Haloptilus spp., male; Heterorhabdidae, c1-c3; Heterorhabdidae, c4-c5; Heterorhabdidae, female; Heterorhabdidae, male; Heterorhabdus cf. lobatus, c1-c3; Heterorhabdus cf. lobatus, c4-c5; Heterorhabdus cf. lobatus, female; Heterorhabdus cf. lobatus, male; Heterorhabdus spp., c1-c3; Heterorhabdus spp., c4-c5; Heterorhabdus spp., female; Heterorhabdus spp., male; Lophothrix humilifrons, c1-c3; Lophothrix humilifrons, c4-c5; Lophothrix humilifrons, female; Lophothrix humilifrons, male; Lophothrix spp., c1-c3; Lophothrix spp., c4-c5; Lophothrix spp., female; Lophothrix spp., male; Lucicutia gaussae, c1-c3; Lucicutia gaussae, c4-c5; Lucicutia gaussae, female; Lucicutia gaussae, male; Lucicutia longicornis, c1-c3; Lucicutia longicornis, c4-c5; Lucicutia longicornis, female; Lucicutia longicornis, male; Lucicutia ovalis, c1-c3; Lucicutia ovalis, c4-c5; Lucicutia ovalis, female; Lucicutia ovalis, male; Lucicutia spp., c1-c3; Lucicutia spp., c4-c5; Lucicutia spp., female; Lucicutia spp., male; Mecynocera clausi, c1-c3; Mecynocera clausi, c4-c5; Mecynocera clausi, female; Mecynocera clausi, male; Megacalanus princeps, c1-c3; Megacalanus princeps, c4-c5; Megacalanus princeps, female; Megacalanus princeps, male; Mesocalanus tenuicornis, c1-c3; Mesocalanus tenuicornis, c4-c5; Mesocalanus tenuicornis, female; Mesocalanus tenuicornis, male; Metridia brevicauda, c1-c3; Metridia brevicauda, c4-c5; Metridia brevicauda, female; Metridia brevicauda, male; Metridia discreta, c1-c3; Metridia discreta, c4-c5; Metridia discreta, female; Metridia discreta, male; Metridia effusa, c1-c3; Metridia effusa, c4-c5; Metridia effusa, female; Metridia effusa, male; Metridia lucens, c1-c3; Metridia lucens, c4-c5; Metridia lucens, female; Metridia lucens, male; Metridia princeps, c1-c3; Metridia princeps, c4-c5; Metridia princeps, female; Metridia princeps, male; Metridia spp., c1-c3; Metridia spp., c4-c5; Metridia spp., female; Metridia spp., male; Metridia venusta, c1-c3; Metridia venusta, c4-c5; Metridia venusta, female; Metridia venusta, male; Metridinidae, c1-c3; Metridinidae, c4-c5; Metridinidae, female; Metridinidae, male; Microcalanus spp., c1-c3; Microcalanus spp., c4-c5; Microcalanus spp., female; Microcalanus spp., male; Mimocalanus spp., c1-c3; Mimocalanus spp., c4-c5; Mimocalanus spp., female; Mimocalanus spp., male; Monacilla spp., c1-c3; Monacilla spp., c4-c5; Monacilla spp., female; Monacilla spp., male; Monacilla typica, c1-c3; Monacilla typica, c4-c5; Monacilla typica, female; Monacilla typica, male; MSN; Multiple opening/closing net; Nannocalanus minor, c1-c3; Nannocalanus minor, c4-c5; Nannocalanus minor, female; Nannocalanus minor, male; Neocalanus gracilis, c1-c3; Neocalanus gracilis, c4-c5; Neocalanus gracilis, female; Neocalanus gracilis, male; Neocalanus robustior, c1-c3; Neocalanus robustior, c4-c5; Neocalanus robustior, female; Neocalanus robustior, male; Nullosetigera impar, c1-c3; Nullosetigera impar, c4-c5; Nullosetigera impar, female; Nullosetigera impar, male; Nullosetigera spp., c1-c3; Nullosetigera spp., c4-c5; Nullosetigera spp., female;
    Type: Dataset
    Format: text/tab-separated-values, 9342 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-09
    Description: Abundance and community structure of calanoid copepods of one day (stn. 16; bottom depth 5,433 m) and one night station (stn. 15; bottom depth 5,462 m) were analyzed (Fig. 1). Stratified vertical hauls were carried out within 24 h with a HydroBios Multinet Maxi (0.5 m2 net opening, 9 nets, 150 µm mesh size) from 800 m depth to the surface (strata: 800-700-600-500-400-300-200-100-50-0 m). The filtered water volume was measured with a flowmeter attached to the net opening. After retrieval, samples were preserved in a 4% borax-buffered formaldehyde in seawater solution. Calanoid copepods were sorted according to their developmental stages (copepodids C1-3 and C4/5, adult females and males), counted and identified to genus or, if possible, to species level under a dissecting microscope (Leica MZ12). Rare species (〈100 individuals per sample) were counted from the entire sample. Total length (TL) of up to 100 calanoid individuals per taxonomic category (i.e. family/genus/species) and stage was measured (~6,600 specimens in total). Dry mass (DM) of calanoids was calculated based on the median TL of each taxonomic category. Individual respiration rates were calculated from individual DM and in situ temperatures, which were then converted to carbon units and used to calculate ingestion and egestion rates.
    Keywords: calanoid copepods; South Atlantic Ocean; subtropical area; Zooplankton
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-17
    Keywords: Prosome, length; Prosome length, standard deviation; Species; TRAFFIC; Trophic Transfer Efficiency in the Benguela Current
    Type: Dataset
    Format: text/tab-separated-values, 561 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-17
    Keywords: Acartia, c1-c3, ingestion rate of carbon; Acartia, c4-c5, ingestion rate of carbon; Acartia, female, ingestion rate of carbon; Acartia, male, ingestion rate of carbon; Aetideidae, c1-c3, ingestion rate of carbon; Aetideidae, c4-c5, ingestion rate of carbon; Aetideopsis, c4-c5, ingestion rate of carbon; Aetideus, c4-c5, ingestion rate of carbon; Aetideus, male, ingestion rate of carbon; Aetideus armatus, female, ingestion rate of carbon; Aetideus giesbrechti, female, ingestion rate of carbon; Amallothrix, female, ingestion rate of carbon; Augaptilidae, c1-c3, ingestion rate of carbon; Calanidae, c1-c3, ingestion rate of carbon; Calanoida, biomass as dry weight; Calanoida, ingestion rate of carbon; Calanoida, total; Calanoides natalis, c4-c5, ingestion rate of carbon; Calanoides natalis, female, ingestion rate of carbon; Calanoides natalis, male, ingestion rate of carbon; Calanus agulhensis, c4-c5, ingestion rate of carbon; Calanus agulhensis, female, ingestion rate of carbon; Calanus agulhensis, male, ingestion rate of carbon; Calculated; Candacia, c1-c3, ingestion rate of carbon; Candacia, c4c5, ingestion rate of carbon; Candacia bipinnata, female , ingestion rate of carbon; Candacia curta, female, ingestion rate of carbon; Candacia curta, male, ingestion rate of carbon; Candacia sp., female, ingestion rate of carbon; Centropages brachiatus, c1-c3, ingestion rate of carbon; Centropages brachiatus, c4-c5, ingestion rate of carbon; Centropages brachiatus, female, ingestion rate of carbon; Centropages brachiatus, male, ingestion rate of carbon; Centropages bradyi, c1-c3, ingestion rate of carbon; Centropages bradyi, c4-c5, ingestion rate of carbon; Chiridius gracilis, c4-c5, ingestion rate of carbon; Chiridius gracilis, female, ingestion rate of carbon; Clausocalanidae, ingestion rate of carbon; Comment; Cyclopoida, biomass as dry weight; Cyclopoida, ingestion rate of carbon; Cyclopoida, total; Date/Time of event; Depth, bottom/max; Depth, top/min; DEPTH, water; Elevation of event; Euaugaptilus palumboi, c4-c5, ingestion rate of carbon; Euaugaptilus palumboi, female, ingestion rate of carbon; Eucalanus hyalinus, female, ingestion rate of carbon; Eucalanus hyalinus, male, ingestion rate of carbon; Euchaeta, c1-c3, ingestion rate of carbon; Euchaeta, c4-c5, ingestion rate of carbon; Euchaeta acuta, female, ingestion rate of carbon; Euchaeta acuta, male, ingestion rate of carbon; Euchaeta marina, female, ingestion rate of carbon; Euchaeta media, female, ingestion rate of carbon; Euchaeta sp., male, ingestion rate of carbon; Euchirella rostrata, c4-c5, ingestion rate of carbon; Euchirella sp., c1-c3, ingestion rate of carbon; Euchirella sp., c4-c5, ingestion rate of carbon; Event label; Gaetanus brevispinus, male, ingestion rate of carbon; Gaetanus cf. minor, c1-c3, ingestion rate of carbon; Gaetanus cf. minor, c4-c5, ingestion rate of carbon; Gaetanus sp., c4-c5, ingestion rate of carbon; Gaetanus spp., c1-c3, ingestion rate of carbon; Haloptilus longicornis, c1-c3, ingestion rate of carbon; Haloptilus longicornis, c4-c5, ingestion rate of carbon; Haloptilus longicornis, female, ingestion rate of carbon; Haloptilus oxycephalus, female, ingestion rate of carbon; Heterorhabdus spp., c1-c3, ingestion rate of carbon; Heterorhabdus spp., c4-c5, ingestion rate of carbon; Heterorhabdus spp., female, ingestion rate of carbon; Heterorhabdus spp., male, ingestion rate of carbon; Labidocera acuta, female, ingestion rate of carbon; Latitude of event; Longitude of event; Lophothrix frontalis, c4-c5, ingestion rate of carbon; Lophothrix latipes, female, ingestion rate of carbon; Lucicutia, maleagna, female, ingestion rate of carbon; Lucicutia clausii, c4-c5, ingestion rate of carbon; Lucicutia clausii, female, ingestion rate of carbon; Lucicutia clausii, male, ingestion rate of carbon; Lucicutia gaussae, female, ingestion rate of carbon; Lucicutia ovalis, male, ingestion rate of carbon; Lucicutia spp., c1-c3, ingestion rate of carbon; Lucicutia spp., c4-c5, ingestion rate of carbon; Lucicutia spp., female, ingestion rate of carbon; Lucicutia spp., male, ingestion rate of carbon; M153; M153_11-4; M153_12-4; M153_18-15; M153_6-4; M153_7-5; M153_8-4; M153_9-3; Mesocalanus tenuicornis, c1-c3, ingestion rate of carbon; Mesocalanus tenuicornis, c4-c5, ingestion rate of carbon; Mesocalanus tenuicornis, female, ingestion rate of carbon; Mesocalanus tenuicornis, male, ingestion rate of carbon; Meteor (1986); Metridia brevicauda, c4-c5, ingestion rate of carbon; Metridia brevicauda, female, ingestion rate of carbon; Metridia brevicauda, male, ingestion rate of carbon; Metridia effusa, c4-c5, ingestion rate of carbon; Metridia effusa, female, ingestion rate of carbon; Metridia effusa, male, ingestion rate of carbon; Metridia lucens, c4-c5, ingestion rate of carbon; Metridia lucens, female, ingestion rate of carbon; Metridia lucens, male, ingestion rate of carbon; Metridia venusta, c4-c5, ingestion rate of carbon; Metridia venusta, female, ingestion rate of carbon; Metridia venusta, male, ingestion rate of carbon; Metridinidae, c1-c3, ingestion rate of carbon; Monacilla sp., male, ingestion rate of carbon; MSN; Multiple opening/closing net; Nannocalanus, minor, c4-c5, ingestion rate of carbon; Nannocalanus, minor, female, ingestion rate of carbon; Nannocalanus, minor, male, ingestion rate of carbon; Neocalanus gracilis, c1-c3, ingestion rate of carbon; Neocalanus gracilis, c4-c5, ingestion rate of carbon; Neocalanus gracilis, female, ingestion rate of carbon; Neocalanus gracilis, male, ingestion rate of carbon; Nullosetigera helgae, female, ingestion rate of carbon; Nullosetigera impar, female, ingestion rate of carbon; Nullosetigera spp., c4-c5, ingestion rate of carbon; Oithona, ingestion rate of carbon; Oncaeidae, ingestion rate of carbon; Pareucalanus sp., c1-c3, ingestion rate of carbon; Pareucalanus sp., c4-c5, ingestion rate of carbon; Pleuromamma abdominalis, c1-c3, ingestion rate of carbon; Pleuromamma abdominalis, c4-c5, ingestion rate of carbon; Pleuromamma abdominalis, female, ingestion rate of carbon; Pleuromamma abdominalis, male, ingestion rate of carbon; Pleuromamma quadrungulata, c1-c3, ingestion rate of carbon; Pleuromamma quadrungulata, c4-c5, ingestion rate of carbon; Pleuromamma quadrungulata, female, ingestion rate of carbon; Pleuromamma quadrungulata, male, ingestion rate of carbon; Pleuromamma robusta, c4-c5, ingestion rate of carbon; Pleuromamma robusta, male, ingestion rate of carbon; Pleuromamma spp. small, c4-c5, ingestion rate of carbon; Pleuromamma spp. small, female, ingestion rate of carbon; Pleuromamma spp. small, male, ingestion rate of carbon; Pleuromamma xiphias, c4-c5, ingestion rate of carbon; Pleuromamma xiphias, female, ingestion rate of carbon; Pleuromamma xiphias, male, ingestion rate of carbon; Pseudoamallothrix sp., c4-c5, ingestion rate of carbon; Pseudoamallothrix sp., female, ingestion rate of carbon; Pseudochirella sp., c4-c5, ingestion rate of carbon; Rhincalanus cornutus, c4-c5, ingestion rate of carbon; Rhincalanus cornutus, female, ingestion rate of carbon; Rhincalanus nasutus, c1-c3, ingestion rate of carbon; Rhincalanus nasutus, c4-c5, ingestion rate of carbon; Rhincalanus nasutus, female, ingestion rate of carbon; Rhincalanus nasutus, male, ingestion rate of carbon; Scaphocalanus curtus, female, ingestion rate of carbon; Scaphocalanus spp., c1-c3, ingestion rate of carbon; Scaphocalanus spp., c4-c5, ingestion rate of carbon; Scaphocalanus spp., female, ingestion rate of carbon; Scaphocalanus spp., male, ingestion rate of carbon; Scolecithricella spp., c1-c3, ingestion rate of carbon; Scolecithricella spp., c4-c5, ingestion rate of carbon; Scolecithricella spp., female, ingestion rate of carbon; Scolecithricella spp., male, ingestion rate of carbon; Scolecithrix bradyi, c4-c5, ingestion rate of carbon; Scolecithrix bradyi, female, ingestion rate of carbon; Scolecithrix bradyi, male, ingestion rate of carbon; Scolecithrix
    Type: Dataset
    Format: text/tab-separated-values, 4725 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-17
    Description: Small copepod genera play an important role in marine food webs and biogeochemical fluxes but have been neglected in many studies. Abundance, biomass and carbon consumption rates of small- (〈1 mm prosome length (PL)), medium- (1-1.5 mm PL) and large-sized (〉2 mm PL) copepods along a cross-shelf transect in the southern Benguela upwelling system were determined using rather high taxonomic resolution. Zooplankton samples were collected with a Multinet (Hydrobios Multinet midi, 5 nets with 200 µm meshsize) during the Meteor cruise M153 in February/March 2019. Calanoids contributed on average 55 ± 19% to total copepod abundance and 82 ± 13% to total copepod biomass. Small-sized Oithona spp. (119/114 mg C m-2 d-1) and Clauso-/Paracalanidae (87/263 mg C m-2 d-1) as well as large-sized Calanoides natalis (47/193 mg C m-2 d-1) were the dominant consumers at the most inshore stations. Small and medium-sized copepodite stages of Metridia lucens were also important, especially towards the continental slope. At offshore stations, Para-/Clausocalanidae (17-27 mg C m-2 d-1), Oithona spp. (9-16 mg C m-2 d-1), Pleuromamma spp. (0-16 mg C m-2 d-1), Calanus agulhensis (0-15 mg C m-2 d-1), Acartia spp. (0-12 mg C m-2 d-1), C. natalis (0-10 mg C m-2 d-1) and M. lucens (2-6 mg C m-2 d-1) were dominant consumers. Hence, usually small- and medium-sized copepods dominated total copepod ingestion, emphasizing that inadequate representation of small copepods will lead to significant underestimations and misinterpretations of the functioning of zooplankton communities, and finally to inadequate biogeochemical models.
    Keywords: TRAFFIC; Trophic Transfer Efficiency in the Benguela Current
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-17
    Keywords: Comment; Copepoda, mass; Date/Time of event; Depth, bottom/max; Depth, top/min; DEPTH, water; Elevation of event; Event label; Latitude of event; Length, total; Life stage; Longitude of event; M153; M153_14-4; M153_15-3; M153_18-15; M153_18-18; M153_18-47; M153_18-7; M153_2-2; M153_22-5; M153_25-6; M153_29-5; M153_31-3; M153_33-3; M153_3-4; M153_34-6; M153_35-14; M153_35-16; M153_35-6; M153_35-7; M153_37-5; M153_38-5; M153_39-11; M153_39-23; M153_40-6; M153_41-4; M153_45-4; M153_5-4; M153_7-16; M153_7-5; Meteor (1986); MSN; Multiple opening/closing net; Prosome, length; Sample ID; Species; Station label; TRAFFIC; Trophic Transfer Efficiency in the Benguela Current
    Type: Dataset
    Format: text/tab-separated-values, 3366 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-24
    Description: Zooplankton metabolic processes play an important role in carbon budgets and fluxes of pelagic ecosystems. Respiration rates of several copepod species were determined to reveal their energy requirements and assess their significance in the carbon cycle. Respiration rates were measured by optode respirometry and allometrically based on body dry mass (DM). For the on-board measurements, a 10-channel optode respirometer (PreSens Precision Sensing Oxy-10 Mini) was used and experiments were run in gas-tight glass bottles (13-14 ml) filled with filtered seawater to reduce bias by microbial respiration. In addition, respiration rates for all dominant copepod species during MSM80 including copepodite stages C4 to C6 were determined based on individual DM and respective ambient temperatures after Bode et al. (2018). For that, individual DM, if not available from frozen specimens, was determined from formalin/Steedman-preserved samples by weighing the dried samples on a microbalance. Losses in body DM due to formalin/Steedman preservation were considered after Schukat et al. (2021). Respiration rates were calculated separately for the copepod family Eucalanidae (a) as they are rather sluggish while all other copepods exhibited normal activity (b). (a) lnRTF = -2.180 + 0.787 ln(DM) + 0.131T and (b) lnRAC = -0.890 + 0.646 ln(DM) + 0.094T, where R (μl O2 ind-1 h-1) is the individual respiration rate for eucalanid (RTF) and active (RAC) copepods, DM represents dry mass in mg and T the average temperature (°C) of the sampling interval. Respiration rates of the medium- to larger-sized copepods (female prosome length (PL) of 1.2-6.0 mm) were compared to those of "small copepods" (all copepods with female PL 〈1.1 mm and young stages). Medium- to larger-sized species ingested on average 13-212 mg C m-2 d-1 in coastal regions while "small copepods" on average consumed 118-328 mg C m-2 d-1. The potential egestion varied on average from 5-64 mg C m-2 d-1 for medium to larger-sized copepods and 35-98 mg C m-2 d-1 for "small copepods". Data of energy demands, consumption and egestion rates of copepod species differing in size are essential to improve carbon budgets and food-web models in the Humboldt Current System.
    Keywords: Analytical method; calanoid copepods; carbon budgets; Coastal Upwelling System in a Changing Ocean; consumption rates; Copepoda, mass; CUSCO; CUSCO-1; Date/Time of event; Depth, bottom/max; Depth, top/min; Egestion rate of carbon per day per individual; Event label; Ingestion rate of carbon per day per individual; Latitude of event; Life stage; Longitude of event; Maria S. Merian; MSM80; MSM80_102-4; MSM80_10-4; MSM80_104-6; MSM80_13-4; MSM80_14-4; MSM80_15-5; MSM80_1-6; MSM80_16-4; MSM80_18-4; MSM80_20-4; MSM80_22-4; MSM80_25-4; MSM80_28-4; MSM80_30-4; MSM80_38-5; MSM80_40-5; MSM80_43-5; MSM80_45-5; MSM80_4-6; MSM80_46-6; MSM80_53-4; MSM80_56-5; MSM80_58-4; MSM80_60-4; MSM80_66-4; MSM80_67-4; MSM80_68-5; MSM80_70-3; MSM80_7-4; MSM80_74-4; MSM80_78-4; MSM80_80-6; MSM80_89-4; MSM80_90-4; MSM80_94-5; MSM80_95-4; MSM80_96-4; MSM80_99-6; MSN; Multiple opening/closing net; Respiration rate, carbon, per individual; Respiration rate, oxygen, per dry mass; Respiration rate, oxygen, per individual; Sample ID; Species; Station label; Temperature, technical; Upwelling
    Type: Dataset
    Format: text/tab-separated-values, 10108 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-24
    Keywords: Comment; Date/Time of event; Depth, bottom/max; Depth, top/min; DEPTH, water; Dry mass per individual; Elevation of event; Event label; experiment; Experiment; Individual respiration rate; Latitude of event; Life stage; Longitude of event; M153; M153_11-4; M153_12-4; M153_13-4; M153_14-4; M153_17-5; M153_18-15; M153_18-18; M153_18-5; M153_18-7; M153_24-6; M153_25-6; M153_31-3; M153_33-3; M153_34-6; M153_35-14; M153_35-6; M153_37-5; M153_38-5; M153_39-23; M153_40-6; M153_40-7; M153_43-4; M153_44-4; M153_45-4; M153_49-2; M153_7-16; M153_7-5; M153_8-4; M153_9-3; Meteor (1986); MSN; Multiple opening/closing net; Respiration rate, oxygen, per dry mass; Sample ID; Species; Station label; Temperature, water; TRAFFIC; Trophic Transfer Efficiency in the Benguela Current
    Type: Dataset
    Format: text/tab-separated-values, 1690 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...