ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2099
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Summary Populations of G1-phase Chinese hamster cells in stirred suspensions containing various concentrations of DMSO were irradiated with 250 kV X-rays or various heavy charged-particle beams. Chemical radioprotection of cell inactivation was observed for all LET values studied. When cell survival data were resolved into linear and quadratic components, the extent and concentration dependence of DMSO protection were found to be different for the two mechanisms. The chemical kinetics of radioprotection for single-events were similar for LET values up to those which gave the maximum RBE. DMSO protected to a lesser extent against energetic argon ions at an median LET of ∼ 220 keV/µm. These data could indicate the contribution of indirect action by hydroxyl radicals and hydrogen atoms to cell inactivation by single-hit and double-hit mechanisms for various radiation qualities. The decrease in RBE observed at very high LET may result, in part, from reduced yields of water radicals at 10−9−10−8 s resulting from radical recombination mechanisms within the charged particle tracks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Radiation and environmental biophysics 34 (1995), S. 129-131 
    ISSN: 1432-2099
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in our knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared with previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers, including space travelers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-03-26
    Print ISSN: 0741-3335
    Electronic ISSN: 1361-6587
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Synchrotron radiation based Fourier transform IR (SR-FTIR) spectromicroscopy allows the study of individual living cells with a high signal to noise ratio. Here we report the use of the SR-FTIR technique to investigate changes in IR spectral features from individual human lung fibroblast (IMR-90) cells in vitro at different points in their cell cycle. Clear changes are observed in the spectral regions corresponding to proteins, DNA, and RNA as a cell changes from the G(1)-phase to the S-phase and finally into mitosis. These spectral changes include markers for the changing secondary structure of proteins in the cell, as well as variations in DNA/RNA content and packing as the cell cycle progresses. We also observe spectral features that indicate that occasional cells are undergoing various steps in the process of cell death. The dying or dead cell has a shift in the protein amide I and II bands corresponding to changing protein morphologies, and a significant increase in the intensity of an ester carbonyl C===O peak at 1743 cm(-1) is observed. Copyright John Wiley & Sons, Inc. Biopolymers (Biospectroscopy) 57: 329-335, 2000.
    Keywords: Life Sciences (General)
    Type: Biopolymers (ISSN 0006-3525); Volume 57; 6; 329-35
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast, there was a dose-dependent increase in ICAM-1 immunofluorescence in confluent, but not exponentially-growing cells. These results suggest that proton irradiation downregulates beta 1-integrin and upregulates ICAM-1, potentially contributing to cell death or to aberrant differentiation via modulation of anchorage and/or signal transduction functions. Quantification of the expression levels of the CAMs by Western analysis is in progress.
    Keywords: Life Sciences (General)
    Type: Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) (ISSN 1120-1797); Volume 17 Suppl 1; 247-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The dual goals of optimizing clinical efficacy of hadrontherapy and determining radiation risk estimates for space research have intersected to a common focus for investigation of the biological effects of charged particles. This paper briefly highlights recent international progress at accelerator facilities engaged in both biological and clinical studies of the effects of particle beams, primarily protons, carbon and iron ions. Basic mechanisms of molecular, cellular and tissue responses continue under investigation for radiations with a range of ionization densities. Late normal tissue effects, including the risk of cancer in particular, are of importance for both research fields. International cooperation has enhanced the rate of progress as evidenced by recent publications. Specific areas of biomedical research related to the biological radiotoxicity of critical organs (especially the central nervous system), individual radiosensitivities to radiation carcinogenesis, and the analysis of effects in mixed radiation fields still require more research. Recommendations for addressing these issues are made.
    Keywords: Life Sciences (General)
    Type: Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) (ISSN 1120-1797); 17 Suppl 1; 50-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Particle Irradiation Induces FGF2 Expression in Normal Human Lens Cells. Particle radiations, including both proton and helium-ion beams, have been used to successfully treat choroidal melanoma, but with the complication of radiation-induced cataract. We have investigated a role for radiation-induced changes in the expression of basic fibroblast growth factor (FGF2) gene expression as part of the mechanism(s) underlying lens cell injury associated with cataract. Normal human lens epithelial (HLE) cells were cultured in vitro on extracellular matrix (ECM) originated from bovine corneal endothelial cells. This study reports evidence for rapid but transient induction of FGF2 transcripts, an increase of between 5- and 8-fold, within 0.5 h after exposure to particle radiation, followed by another wave of increased transcription at 2-3 h postirradiation. Immunofluorescence results confirm the enhanced levels of FGF2 protein rapidly after exposure to protons or helium ions, followed by another wave of increased activity unique to helium at 6 h postirradiation. This second wave of increased immunoreactivity was not observed in the proton-irradiated samples. Total FGF2 protein analysis after helium-ion exposures shows induced expression of three FGF2 isoforms, with an increase of up to 2-fold in the 18-kDa low-molecular-weight species. Studies of the effects of protons on individual FGF2 protein isoforms are in progress. Several mechanisms involving a role for FGF2 in radiation-induced cataract are discussed.
    Keywords: Life Sciences (General)
    Type: Radiation research (ISSN 0033-7587); 154; 5; 477-84
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Our basic understanding of the biological responses to cosmic radiations comes in large part from an international series of ground-based laboratory studies, where accelerators have provided the source of representative charged particle radiations. Most of the experimental studies have been performed using acute exposures to a single radiation type at relatively high doses and dose rates. However, most exposures in flight occur from low doses of mixed radiation fields at low-dose rates. This paper provides a brief overview of existing pertinent clinical and biological radiation data and the limitations associated with data available from specific components of the radiation fields in airflight and space travel.
    Keywords: Life Sciences (General)
    Type: Health physics (ISSN 0017-9078); 79; 5; 495-506
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: PURPOSE: The purpose of this investigation is to delineate the risk factors in the development of neovascular glaucoma (NVG) after helium-ion irradiation of uveal melanoma patients and to propose treatment technique that may reduce this risk. METHODS AND MATERIALS: 347 uveal melanoma patients were treated with helium-ions using a single-port treatment technique. Using univariate and multivariate statistics, the NVG complication rate was analyzed according to the percent of anterior chamber in the radiation field, tumor size, tumor location, sex, age, dose, and other risk factors. Several University of California San Francisco-Lawrence Berkeley National Laboratory (LBNL) patients in each size category (medium, large, and extralarge) were retrospectively replanned using two ports instead of a single port. By using appropriate polar and azimuthal gaze angles or by treating patients with two ports, the maximum dose to the anterior segment of the eye can often be reduced. Although a larger volume of anterior chamber may receive a lower dose by using two ports than a single port treatment. We hypothesize that this could reduce the level of complications that result from the irradiation of the anterior chamber of the eye. Dose-volume histograms were calculated for the lens, and compared for the single and two-port techniques. RESULTS: NVG developed in 121 (35%) patients. The risk of NVG peaked between 1 and 2.5 years posttreatment. By univariate and multivariate analysis, the percent of lens in the field was strongly correlated with the development of NVG. Other contributing factors were tumor height, history of diabetes, and vitreous hemorrhage. Dose-volume histogram analysis of single-port vs. two-port techniques demonstrate that for some patients in the medium and large category tumor groups, a significant decrease in dose to the structures in the anterior segment of the eye could have been achieved with the use of two ports. CONCLUSION: The development of NVG after helium-ion irradiation is correlated to the amount of lens, anterior chamber in the treatment field, tumor height, proximity to the fovea, history of diabetes, and the development of vitreous hemorrhage. Although the influence of the higher LET deposition of helium-ions is unclear, this study suggests that by reducing the dose to the anterior segment of the eye may reduce the NVG complications. Based on this retrospective analysis of LBNL patients, we have implemented techniques to reduce the amount of the anterior segment receiving a high dose in our new series of patients treated with protons using the cyclotron at the UC Davis Crocker Nuclear Laboratory (CNL).
    Keywords: Life Sciences (General)
    Type: International journal of radiation oncology, biology, physics (ISSN 0360-3016); 39; 5; 997-1010
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: PURPOSE: To characterize the growth and maturation of nonimmortalized human lens epithelial (HLE) cells grown in vitro. METHODS: HLE cells, established from 18-week prenatal lenses, were maintained on bovine corneal endothelial (BCE) extracellular matrix (ECM) in medium supplemented with basic fibroblast growth factor (FGF-2). The identity, growth, and differentiation of the cultures were characterized by karyotyping, cell morphology, and growth kinetics studies, reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and Western blot analysis. RESULTS: HLE cells had a male, human diploid (2N = 46) karyotype. The population-doubling time of exponentially growing cells was 24 hours. After 15 days in culture, cell morphology changed, and lentoid formation was evident. Reverse transcription-polymerase chain reaction (RT-PCR) indicated expression of alphaA- and betaB2-crystallin, fibroblast growth factor receptor 1 (FGFR1), and major intrinsic protein (MIP26) in exponential growth. Western analyses of protein extracts show positive expression of three immunologically distinct classes of crystallin proteins (alphaA-, alphaB-, and betaB2-crystallin) with time in culture. By Western blot analysis, expression of p57(KIP2), a known marker of terminally differentiated fiber cells, was detectable in exponential cultures, and levels increased after confluence. MIP26 and gamma-crystallin protein expression was detected in confluent cultures, by using immunofluorescence, but not in exponentially growing cells. CONCLUSIONS: HLE cells can be maintained for up to 4 months on ECM derived from BCE cells in medium containing FGF-2. With time in culture, the cells demonstrate morphologic characteristics of, and express protein markers for, lens fiber cell differentiation. This in vitro model will be useful for investigations of radiation-induced cataractogenesis and other studies of lens toxicity.
    Keywords: Life Sciences (General)
    Type: Investigative ophthalmology & visual science (ISSN 0146-0404); 41; 12; 3898-907
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...