ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-04-29
    Description: The Southern Ocean’s Antarctic Circumpolar Current (ACC) and meridional overturning circulation (MOC) response to increasing zonal wind stress is, for the first time, analyzed in a high-resolution (0.1° ocean and 0.25° atmosphere), fully coupled global climate simulation using the Community Earth System Model. Results from a 20-yr wind perturbation experiment, where the Southern Hemisphere zonal wind stress is increased by 50% south of 30°S, show only marginal changes in the mean ACC transport through Drake Passage—an increase of 6% [136–144 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1)] in the perturbation experiment compared with the control. However, the upper and lower circulation cells of the MOC do change. The lower cell is more affected than the upper cell with a maximum increase of 64% versus 39%, respectively. Changes in the MOC are directly linked to changes in water mass transformation from shifting surface isopycnals and sea ice melt, giving rise to changes in surface buoyancy forcing. The increase in transport of the lower cell leads to upwelling of warm and salty Circumpolar Deep Water and subsequent melting of sea ice surrounding Antarctica. The MOC is commonly supposed to be the sum of two opposing components: a wind- and transient-eddy overturning cell. Here, the transient-eddy overturning is virtually unchanged and consistent with a large-scale cancellation of localized regions of both enhancement and suppression of eddy kinetic energy along the mean path of the ACC. However, decomposing the time-mean overturning into a time- and zonal-mean component and a standing-eddy component reveals partial compensation between wind-driven and standing-eddy components of the circulation.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-13
    Description: It has traditionally been thought that midlatitude sea surface temperature (SST) variability is predominantly driven by variations in air–sea surface heat fluxes (SHFs) associated with synoptic weather variability. Here it is shown that in regions marked by the highest climatological SST gradients and SHF loss to the atmosphere, the variability in SST and SHF at monthly and longer time scales is driven by internal ocean processes, termed here “oceanic weather.” This is shown within the context of an energy balance model of coupled air–sea interaction that includes both stochastic forcing for the atmosphere and ocean. The functional form of the lagged correlation between SST and SHF allows us to discriminate between variability that is driven by atmospheric versus oceanic weather. Observations show that the lagged functional relationship of SST–SHF and SST tendency–SHF correlation is indicative of ocean-driven SST variability in the western boundary currents (WBCs) and the Antarctic Circumpolar Current (ACC). By applying spatial and temporal smoothing, thereby dampening the signature SST anomalies generated by eddy stirring, it is shown that the oceanic influence on SST variability increases with time scale but decreases with increasing spatial scale. The scale at which SST variability in the WBCs and the ACC transitions from ocean to atmosphere driven occurs at scales less than 500 km. This transition scale highlights the need to resolve mesoscale eddies in coupled climate models to adequately simulate the variability of air–sea interaction. Away from strong SST fronts the lagged functional relationships are indicative of the traditional paradigm of atmospherically driven SST variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-04-09
    Description: A traditional view is that the ocean outside of the tropics responds passively to atmosphere forcing, which implies that air–sea heat fluxes are mainly driven by atmosphere variability. This paper tests this viewpoint using state-of-the-art air–sea turbulent heat flux observational analyses and a climate model run at different resolutions. It is found that in midlatitude ocean frontal zones the variability of air–sea heat fluxes is not predominantly driven by the atmosphere variations but instead is forced by sea surface temperature (SST) variations arising from intrinsic oceanic variability. Meanwhile in most of the tropics and subtropics wind is the dominant driver of heat flux variability, and atmosphere humidity is mainly important in higher latitudes. The predominance of ocean forcing of heat fluxes found in frontal regions occurs on scales of around 700 km or less. Spatially smoothing the data to larger scales results in the traditional atmosphere-driving case, while filtering to retain only small scales of 5° or less leads to ocean forcing of heat fluxes over most of the globe. All observational analyses examined (1° OAFlux; 0.25° J-OFURO3; 0.25° SeaFlux) show this general behavior. A standard resolution (1°) climate model fails to reproduce the midlatitude, small-scale ocean forcing of heat flux: refining the ocean grid to resolve eddies (0.1°) gives a more realistic representation of ocean forcing but the variability of both SST and of heat flux is too high compared to observational analyses.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-01
    Description: As part of the Kuroshio Extension System Study, observations from five current meter moorings reveal that the abyssal currents are weakly bottom intensified. In the framework of linear quasigeostrophic flow, the best fitted vertical trapping depths range from 8 to 15 km in the absence of steep topography, but one mooring near an isolated seamount exhibited vertical trapping that was more pronounced and energetic with a vertical trapping depth of 5 km. The ratios of current speeds and geostrophic pressure streamfunctions at the sea surface compared to the bottom are 88% in the absence of steep topography, 63% near an isolated seamount, and overall on average 83% of their value at a reference depth of 5300 m. It is hypothesized that weakly depth-dependent eddies impinging upon topographic features introduce to the flow the horizontal length scales of the topography, and these smaller lateral scales are subject to bottom intensification.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-11-01
    Description: The Kuroshio Extension System Study (KESS) provided 16 months of observations to quantify divergent eddy heat flux (DEHF) from a mesoscale-resolving array of current- and pressure-equipped inverted echo sounders. KESS observations captured a regime shift from a stable to unstable state. There is a distinct difference in the spatial structure of DEHFs between the two regimes. The stable regime had weak downgradient DEHFs. The unstable regime exhibited asymmetry along the mean path with strong downgradient DEHFs upstream of a mean trough at ~147°E. The spatial structure of DEHFs resulted from episodic mesoscale processes. The first 6 months were during the stable regime in which fluxes were associated with eastward-propagating 10–15-day upper meanders. After 6 months, the Kuroshio Extension underwent a regime shift from a stable to unstable state. This regime shift corresponded with a red shift in mesoscale phenomena with the prevalence of ~40-day deep externally generated eddies. DEHF amplitudes more than quadrupled during the unstable regime. Cold-core ring (CCR) formation, CCR–jet interaction, and coupling between ~40-day deep eddies were responsible for asymmetry in downgradient fluxes in the mean maps not observed during the stable regime. The Kuroshio Extension has prominent deep energy associated with externally generated eddies that interact with the jet to drive some of the biggest DEHF events. These eddies play an important role in the variability of the jet through eddy–mean flow interactions. The DEHFs that result from vertical coupling act in accordance with baroclinic instability. The interaction is not growth from an infinitesimal perturbation, but from the start is a finite-amplitude interaction.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-01
    Description: From 2004 to 2006 an observational array of current- and pressure-recording inverted echo sounders (CPIES) were deployed as part of the Kuroshio Extension (KEx) System Study (KESS). KESS observed a transition from a weakly meandering (“stable”) to strongly meandering (“unstable”) state (Qiu and Chen). As the KEx made this transition, potential vorticity (PV) observed within the southern recirculation gyre (SRG) rapidly increased from January to July 2005. In this study, the authors diagnose eddy PV fluxes (EPVFs) in isentropic coordinates within the subtropical mode water (STMW) layer from the CPIES data to determine the role of mesoscale eddies in this rapid increase of PV. The rapid increase in PV within the SRG coincided with enhanced cross-front EPVFs and eddy PV flux convergence upstream of a mean trough in the KEx path and adjacent to the SRG. The enhanced cross-front EPVFs were the result of the formation of a cold-core ring (CCR) and the interaction of the jet with a preexisting CCR. Eddy diffusivities are diagnosed for the unstable regime with values that range from 100 to 2000 m2 s−1. The high eddy diffusivities during the unstable regime reflect the nature of mesoscale CCR formation and CCR–jet interaction as efficient mechanisms for stirring and mixing high PV waters from the north side of the KEx into the low PV waters of the SRG where STMW resides. This mechanism for cross-frontal exchange can explain observed increases in the STMW PV in the SRG over the 16 months of KESS observations.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-12-01
    Description: For the first time estimates of divergent eddy heat flux (DEHF) from a high-resolution (0.1°) simulation of the Parallel Ocean Program (POP) are compared with estimates made during the Kuroshio Extension System Study (KESS). The results from POP are in good agreement with KESS observations. POP captures the lateral and vertical structure of mean-to-eddy energy conversion rates, which range from 2 to 10 cm2 s−3. The dynamical mechanism of vertical coupling between the deep and upper ocean is the process responsible for DEHFs in POP and is in accordance with baroclinic instability observed in the Gulf Stream and Kuroshio Extension. Meridional eddy heat transport values are ~14% larger in POP at its maximum value. This is likely due to the more zonal path configuration in POP. The results from this study suggest that HR POP is a useful tool for estimating eddy statistics in the Kuroshio Extension region, and thereby provide guidance in the formulation and testing of eddy mixing parameterization schemes.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-05-01
    Description: Observational and model evidence has been mounting that mesoscale eddies play an important role in air–sea interaction in the vicinity of western boundary currents and can affect the jet stream storm track. What is less clear is the interplay between oceanic and atmospheric meridional heat transport in the vicinity of western boundary currents. It is first shown that variability in the North Pacific, particularly in the Kuroshio Extension region, simulated by a high-resolution fully coupled version of the Community Earth System Model matches observations with similar mechanisms and phase relationships involved in the variability. The Pacific decadal oscillation (PDO) is correlated with sea surface height anomalies generated in the central Pacific that propagate west preceding Kuroshio Extension variability with a ~3–4-yr lag. It is then shown that there is a near compensation of O(0.1) PW (PW ≡ 1015 W) between wintertime atmospheric and oceanic meridional heat transport on decadal time scales in the North Pacific. This compensation has characteristics of Bjerknes compensation and is tied to the mesoscale eddy activity in the Kuroshio Extension region.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-01
    Description: The Kuroshio Extension System Study (KESS) provided 16 months of observations to quantify eddy heat flux (EHF) from a mesoscale-resolving array of current- and pressure-equipped inverted echo sounders (CPIES). The mapped EHF estimates agreed well with point in situ measurements from subsurface current meter moorings. Geostrophic currents determined with the CPIES separate the vertical structure into an equivalent-barotropic internal mode and a nearly depth-independent external mode measured in the deep ocean. As a useful by-product of this decomposition, the divergent EHF (DEHF) arises entirely from the correlation between the external mode and the upper-ocean thermal front. EHFs associated with the internal mode are completely rotational. DEHFs were mostly downgradient and strongest just upstream of a mean trough at ~147°E. The downgradient DEHFs resulted in a mean-to-eddy potential energy conversion rate that peaked midthermocline with a magnitude of 10 × 10−3 cm2 s−3 and a depth-averaged value of 3 × 10−3 cm2 s−3. DEHFs were vertically coherent, with subsurface maxima exceeding 400 kW m−2 near 400-m depth. The subsurface maximum DEHFs occurred near the depth where the quasigeostrophic potential vorticity lateral gradient changes sign from one layer to the next below it. The steering level is deeper than this depth of maximum DEHFs. A downgradient parameterization could be fitted to the DEHF vertical structure with a constant eddy diffusivity κ that had values of 800–1400 m2 s−1 along the mean path. The resulting divergent meridional eddy heat transport across the KESS array was 0.05 PW near 35.25°N, which may account for ~⅓ of the total Pacific meridional heat transport at this latitude.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-12-19
    Description: A key question in climate modeling is to what extent sea surface temperature and upper-ocean heat content are driven passively by air–sea heat fluxes, as opposed to forcing by ocean dynamics. This paper investigates the question using a climate model at different resolutions, and observations, for monthly variability. At the grid scale in a high-resolution climate model with resolved mesoscale ocean eddies, ocean dynamics (i.e., ocean heat flux convergence) dominates upper 50 m heat content variability over most of the globe. For deeper depths of integration to 400 m, the heat content variability at the grid scale is almost totally controlled by ocean heat flux convergence. However, a strong dependence on spatial scale is found—for the upper 50 m of ocean, after smoothing the data to around 7°, air–sea heat fluxes, augmented by Ekman heat transports, dominate. For deeper depths of integration to 400 m, the transition scale becomes larger and is above 10° in western boundary currents. Comparison of climate model results with observations show that the small-scale influence of ocean intrinsic variability is well captured by the high-resolution model but is missing from a comparable model with parameterized ocean-eddy effects. In the deep tropics, ocean dynamics dominates in all cases and all scales. In the subtropical gyres at large scales, air–sea heat fluxes play the biggest role. In the midlatitudes, at large scales 〉10°, atmosphere-driven air–sea heat fluxes and Ekman heat transport variability are the dominant processes except in the western boundary currents for the 400 m heat content.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...