ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-11-13
    Description: Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are heterogeneous clonal disorders. Isocitrate dehydrogenase-1 and -2 (IDH1/2) mutations are detected in ~20% of AML and ~5% of MDS, in which they confer gain of a neomorphic function that leads to the production of (R)-2-hydroxyglutarate (2HG). Targeted inhibition of mutant IDH1/2 has resulted in significant responses in IDH1/2 mutant MDS and AML but is not curative and patients relapse (Stein et al. Blood 2016, DiNardo et al. N Engl J Med 2018). 2HG accumulation inhibits the function of histone demethylases (KDM4A and KDM4B) that are critical for the homologous recombination (HR) DNA repair pathway and consequently for the repair of DNA double strand breaks (DSBs) (Mallette et al. EMBO J 2012, Sulkowski et al. Sci Transl Med 2017). In HR deficient tumors, Poly-ADP-Ribose Polymerase (PARP) is essential for DNA single strand break (SSB) repair. In IDH mutant tumors PARP inhibitors induce synthetic lethality by suppressing the repair of SSBs, which eventually get converted into DSBs (Javle and Curtin Br J Cancer 2011). We previously demonstrated that in AML, IDH1/2 mutations impair DNA damage response by inducing a defect in HR, and that this renders leukemia cells susceptible to PARP inhibitors in vitro. We hypothesized that this vulnerability would also exist in IDH mutant MDS and more importantly, that this vulnerability would persist in MDS/AML resistant to IDH1/2 inhibitors. To determine whether PARP inhibition targets IDH mutant MDS/AML in vivo, we took advantage of 2 syngeneic mouse models of MDS and AML relying on co-mutation of SRSF2/IDH2 and FLT3/IDH2, respectively. Olaparib (PARP inhibitor) effectively targeted IDH2 mutant but not IDH2 wild type MDS/AML (Fig. 1A). We next sought to determine whether PARP inhibition mediated synthetic lethality persists in MDS/AML resistant to targeted IDH inhibition. We transduced IDH2 mutant murine cells with IDH2 WT or IDH2 MUT lentiviral vectors carrying one of two published resistance mutations. While these resistance mutations conferred resistance to the targeted IDH2 inhibitor Enasidenib, cells remained sensitive to Olaparib (Fig. 1B). Patient MDS/AML is heterogeneous and in general carries additional genetic mutations and epigenetic alterations. We therefore engrafted IDH1/2 WT and MUT MDS/AML patient samples in cytokine humanized immunodeficient mice and treated with vehicle of Olaparib. Engrafted mice were assigned to vehicle or Olaparib 8 weeks after transplantation based on equal engraftment levels determined by BM aspiration. Mice were treated with vehicle or Olaparib via IP injection for 21 days. Human engraftment levels and plasma 2-HG levels were significantly reduced in Olaparib treated animals when compared to pre-treatment and vehicle-treated mice (Fig. 1C). Of note, when equal numbers of huCD34+ cells from vehicle or Olaparib treated mice were transplanted into next generation mice, engraftment was significantly higher for recipients of human cells from vehicle than Olaparib treated mice, suggesting that Olaparib is toxic to leukemia initiating cells. In contrast, IDH WT MDS/AML was insensitive to Olaparib treatment (Fig. 1C). In conclusion, PARP inhibition is effective in vivo against IDH mutant MDS/AML and can overcome targeted IDH inhibitor resistance. Disclosures Flavell: Zai labs: Consultancy; SMOC: Equity Ownership; Troy: Equity Ownership; Artizan Biosciences: Equity Ownership; GSK: Consultancy; Rheos Biomedicines: Equity Ownership. Prebet:Boehringer Ingelheim: Research Funding; Boehringer Ingelheim: Research Funding; novartis: Honoraria; pfizer: Honoraria; Boehringer Ingelheim: Research Funding; Agios: Consultancy, Research Funding; novartis: Honoraria; Jazz Pharmaceuticals: Consultancy, Honoraria, Research Funding; pfizer: Honoraria; Genentech: Consultancy; pfizer: Honoraria; novartis: Honoraria; Tetraphase: Consultancy; novartis: Honoraria; pfizer: Honoraria; Bristol-Myers Squibb: Honoraria, Research Funding; novartis: Honoraria; pfizer: Honoraria. Bindra:Cybrexa: Consultancy, Equity Ownership.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-13
    Description: In Multiple myeloma (MM) no treatment has a curative potential and even complete response to novel agents such as proteasome inhibitors (PIs) and immunomodulatory agents (IMiDs) are followed by relapse over time. Next generation sequencing (NGS) has showed how MM at diagnosis is defined by several somatic mutations, but only few drivers, even fewer "druggable" mutations, and many found at a subclonal level. At relapse, targeted studies have shown occasional mutations in drug target genes but the genomic and transcriptomic determinants of chemoresistance in MM remains elusive. We selected 42 MM patients refractory to both lenalidomide and PIs. Whole exome sequencing was performed in 40 of them, and RNAseq in 27. Clinical annotation was available for all patients. Standard analysis pipelines where applied to analyze mutations, copy number alterations (CNAs), mutational signatures, gene expression and expressed mutations. Patients received a median of 3 lines of treatment, with median overall survival of 14.6 months from sampling. We found a median of 77.5 mutations per patient, which is more than what reported at diagnosis (Bolli et al, Nature Communications 2014;5:2997). 100% of samples showed evidence of subclonality, and 37% of them exhibited a higher number of subclonal than clonal variants. Therefore, even at this advanced stage the MM genome is evolving and is composed of different subclones that may display different chemosensitivity. The mutational landscape was also different. TP53 mutations were the second most common after KRAS (20% and 17.5%, respectively). Interestingly TP53 mutations all clustered in patients receiving bortezomib as the last line of treatment. Only 2 patients showed a CRBN mutation, both subclonal. Combining mutations and CNA analysis, the TP53 pathway was the most frequently inactivated (45% of patients). Altogether, mutations or deletions of genes in the CRBN E3 ubiquitin ligase complex were found in 32.5% of patients, while proteasomal subunit genes were infrequently hit. Refractory cases were also uniquely characterized by a novel signature linked to exposure to alkylating agents, whose activity was more pronounced after high-dose melphalan suggesting a mutagenic effect of the drug on residual cells at the time of transplant. Whether this has any pathogenetic role on the disease course remains to be elucidated. RNAseq analysis did not show any influence of treatment or mutational data on the clustering of samples, which was mainly influenced by karyotypic events. The main cluster was composed by non-hyperdiploid patients with both amp(1q) and del(13): these showed CCND2 and MCL1 upregulation, the latter representing a marker of venetoclax resistance and novel target of experimental treatments. Only 26.3% of mutations were expressed, and this correlated with the clonality level of the mutation. However, most mutations in driver genes were expressed, with the notable exception of those causing nonsense mediated decay. Overall, classical high-risk features or CRBN pathway mutations were found in 65% of the cohort. However, only amp(1q) predicted survival in our cohort. The lack of prognostic value of high-risk lesions is likely explained by a higher prevalence of such features in double-refractory stages. Our data suggest that gene mutation is not a preferred mode of evolution of drug resistance in MM. Chemoresistance of the bulk tumor population is likely attained though differential, yet converging evolution of different subclones that are overall highly variable from patient to patient and within the same patient. Disclosures Kastritis: Prothena: Honoraria; Genesis: Honoraria; Amgen: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Takeda: Honoraria; Pfizer: Honoraria. Dimopoulos:Sanofi Oncology: Research Funding. Cavo:bms: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel accommodations, Speakers Bureau; sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; novartis: Honoraria; takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel accommodations, Speakers Bureau; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Corradini:Janssen: Honoraria, Other: Travel Costs; Takeda: Honoraria, Other: Travel Costs; Jazz Pharmaceutics: Honoraria; Gilead: Honoraria, Other: Travel Costs; Daiichi Sankyo: Honoraria; Celgene: Honoraria, Other: Travel Costs; Amgen: Honoraria; AbbVie: Consultancy, Honoraria, Other: Travel Costs; KiowaKirin: Honoraria; Kite: Honoraria; BMS: Other: Travel Costs; Sanofi: Honoraria; Servier: Honoraria; Roche: Honoraria; Novartis: Honoraria, Other: Travel Costs. Bolli:Celgene: Honoraria; Novartis: Honoraria; Gilead: Other: travel expenses.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-06
    Description: Background: Minimal residual disease (MRD) detection is of high clinical relevance in patients with B-cell malignancies and is generally a surrogate parameter to evaluate treatment response and long-term prognosis. IgH gene rearrangements can be used as molecular marker in approximately 80% of lymphoma and myeloma patients since they represent lineage-specific markers and the complementarity determining region 3 (CDR3) is unique to each clone. To date, allele specific oligonucleotide polymerase chain reaction (ASO-PCR) and real-time quantitative polymerase chain reaction (RQ-PCR) are considered the most sensitive and widely applicable methods for MRD detection. A major disadvantage of ASO-PCR and RQ-PCR assays, is the use of specific primers and probes for every individual patient. Clone-specific primers and probes are not only expensive but also time-consuming to design and to test, which limits their wide applicability in the clinical setting. The recent major improvements in next generation sequencing (NGS) technologies, provide the opportunity to identify and quantify clonotypes with consensus primers combining the benefits of high sensitivity and universal applicability. The present work was designed to overcome ASO-PCR and RQ-PCR limitations by developing a feasible method for rearranged IgH genes amplification, NGS and analysis using Ion Torrent Personal Genome Machine (IT-PGM). Methods: To define a multiplex PCR protocol, DNA from 7 CLL patients, previously shown to bare a family specific clonal VDJ rearrangement, was amplified with a pool of the seven different family-specific IgH-V primers, and a consensus JH primer (Voena et al., Leukemia 1997). After Sanger sequencing, results were compared to the ones obtained with singleplex PCR protocol. Once validated, the multiplex PCR protocol was used to amplify DNA from patients and serially diluted (up to 10-8 ) DNA from Namalwa cell line (bearing a known IgH rearrangement) and subsequently sequenced on the IT-PGM using the 316 Ion-chip. NGS data were analyzed by using the IMGT-High V-Quest web server tool and the statistical software R. RQ-PCR was used to quantify the specific VDJ rearrangement in the serially diluted Namalwa DNA solutions and in DNA from patients as previously described (Farina et al, Haematologica 2009). RQ-PCR data were analyzed through a relative quantification procedure. Results: The multiplex PCR reactions we have tested, demonstrated the same specificity as the standard singleplex PCR protocol and therefore was used to construct the DNA library required for IT-PGM-based sequencing. The IT-PGM sequencing output is represented by at least 400000 reads per sample with a minimum average coverage of the VDJ repertoire of 500x. The IMGT-High V-quest tool allows a user-friendly web based analysis and a deep molecular characterization of the IgH recombinatorial repertoire. Namalwa clonal CRD3 sequences were detected up to a dilution of 10-5 without the need for specific CDR3 primers. Comparability of NGS and ASO RQ-PCR results was assessed. The use of CDR3 specific primers, along with the specific IgH-V family fluorescent probe, enabled the identification of clonal VDJ rearrangements with a sensitivity up to 10-5 (2/3 replicates) and 10-6 (just 1/3 replicates) in Namalwa Cell Line. Similar results were obtained when we characterized the IgH recombination repertoire of two CLL patients over time. Conclusions: IgH sequencing with the IT-PGM platform showed at least the same level of sensitivity as ASO RQ-PCR, without the need for patient-specific reagents. It also allows specific and detailed molecular characterization of the clonal rearrangements and could be easily incorporated into clinical laboratories for routine testing of MRD in B-cell malignancies. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-12-02
    Description: Background: Approximately 50% of patients with peripheral T-cell lymphoma (PTCL) enter long-term remission after standard chemotherapy and stem cell transplantation. Patients who do not respond to chemotherapy have few treatment options highlighting the critical need for new effective and targeted therapeutics. Aberrant T cell receptor (TCR) and tyrosine kinase (TK) signaling have been described in PTCL (Agostinelli 2014;Netchiporouka 2014). Single-agent TK inhibitors (TKIs) have significantly improved patient outcomes across multiple tumor subtypes. However, TKI therapy is rarely curative. The recent discovery of a subgroup of PTCL characterized by high levels of GATA3 and c-Myc expression and poor prognosis (Iqbal 2014; Manso 2016), establishes the rationale of targeting c-Myc in PTCLs. Based on the demonstration that pharmacologic inhibition of c-Myc is achievable through targeting bromodomain and extra terminal (BET) family of chromatin adapters, the therapeutic potential of BET inhibition was assessed in a panel of T cell lymphoma and leukemia cell lines. Since expression of c-Myc is regulated by the TCR, we also hypothesized that simultaneous targeting of c-Myc and TCR would significantly enhance the antiproliferative effects of BET inhibitors (BETis) and TKI alone in preclinical models of PTCL. Methods: Five T-cell lymphoma and leukemia cell lines (Jurkat, HD-MAR-2, Karpas 299, Sup-T1, HH) were incubated with escalating doses of JQ1 (a small-molecule BETi with the highest affinity for BRD4) and OTX-015 (a BETi with a broader affinity for BRD2, BRD3, BRD4) and the tyrosine-kinase-inhibitor Dasatinib. Analysis of cell viability, cell cycle distribution, apoptosis and mitochondrial depolarization was performed using flow cytometry. Effects of treatments were assessed using gene expression profiling (GEP) and western blotting (WB). Combinations were evaluated using the Chou-Talalay Combination Index (CI), calculated with CompuSyn software (CompuSyn Inc, Paramus, NJ). Results: JQ1 and OTX-015 show antiproliferative activity with IC50 at nanomolar concentrations in all cell lines. As assessed determining viable cells by PI exclusion and flow cytometry, JQ1 and OTX-015 are similarly active in a dose-dependent manner in all cell lines. To understand the activity of JQ1 and OTX-015, we analyzed cell-cycle distribution using flow cytometry. JQ1 and OTX-015 induce a cell cycle arrest with G1-phase accumulation and decrease S-phase with the exception of SUPT1 cells that are characterized by a cell cycle arrest in G2-phase. Minimal increase in the sub-G1 population is observed in all cell lines, suggesting that JQ1 and OTX-015 mainly exert a cytostatic effect. We then examined GATA3 and c-Myc protein levels in all cell lines: varying amounts of GATA3 and c-Myc proteins were observed but a strong correlation between GATA3 and c-Myc expression was detected. After JQ1 and OTX-015 exposure, c-Myc protein level decrease in all cell lines apart from SUP-T1 cell line. Here c-Myc level do not change significantly upon BETis exposure, suggesting that BETis target other pathways relevant for SUP-T1 survival. Dasatinib efficiently inhibits the proliferation in all cell lines at micromolar concentrations in a dose-dependent manner. Dasatinib induces G0/G1-phase arrest and an increase in sub-G1 population indicating a modest induction of apoptosis confirmed by caspase-9 activation and mitochondrial depolarization. Compared to all single agents, combined treatments with sub-optimal concentrations of Dasatinib and JQ1 or OTX-015 exert synergistic lethal activity against all tested cell lines (C.I.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-13
    Description: Among genetic aberrations responsible for ineffective hematopoiesis in myelodysplastic syndromes (MDS) and acute myeloid leukemia, somatic mutations in splicing factors such as U2AF1 are of significant interest as they are recurrent, mutually exclusive and early occurring. U2AF1 participates in mRNA splicing through the recognition of the intronic 3' splice site, forming the U2AF complex as a heterodimer with U2AF2. Heterozygous hotspot mutations at S34 or Q157, in the two U2AF1 zinc fingers respectively, result in sequence dependent aberrant splicing, suggestive of altered RNA binding. The mechanism by which these mutations alter U2AF1-U2AF2-RNA interactions has to date not been elucidated, yet understanding the structure-function relationship is critical to devise novel therapeutic strategies that either aim to correct or exploit RNA binding and splicing defects. To address this issue, we profiled the transcriptome of HEL erythroleukemic cell lines expressing wild-type (WT) and mutant U2AF1. U2AF1 S34F and Q157R mutants induced widespread alterations in splicing patterns of 3250 and 1791 genes respectively, with an overlap of 23.8% genes. On the other hand, we observed only minor alterations in gene expression levels. Meta-analysis and comparison with published RNA sequencing datasets on U2AF1 mutants revealed both conserved and unique splicing changes, with a strong enrichment for genes involved in cell cycle (P=6.7E-15) and DNA repair (P=2.6E-5). Confirming previous literature, U2AF1 S34F preferentially leads to the exclusion of exons preceded by 3' splice sites bearing an intronic UAG motif, while U2AF1 Q157R preferentially excludes exons starting with the AGA motif (Figure 1A). Collectively, the S34F mutation has a stronger effect on splicing, ultimately decreasing the global translation state of cells. To understand how mutations eventually result in the observed splicing alterations, we also profiled with unprecedented resolution the RNA interactome of the physiological and pathological U2AF heterodimer. We first performed enhanced crosslinking immunoprecipitation (eCLIP) on U2AF1 WT, U2AF1 mutants and U2AF2. Comparison of U2AF1 and U2AF2 binding profiles revealed a high degree of similarity, suggesting that they mostly bind to RNA as a tight dimer. Only by performing fractionated eCLIP on U2AF1 we were able to isolate, at the molecular level, the individual contributions of the U2AF components in the recognition of the 3' splice site. In particular, we deconvolved the U2AF2 signal, insisting on the polypyrimidine region, and the U2AF1 signal, peaking on the AG dinucleotide at the intronic end (Figure 1B). Importantly, the S34F mutant displays an aberrant binding profile, with a specific peak on the nucleotide in position -3, matching the sequence specificity previously observed in aberrant splicing events (Figure 1A-B). Systematic analysis of bound junctions suggests a complex model where the S34F mutation does not simply abrogate the ability of U2AF1 to bind splicing junctions ending with the UAG sequence, but rather alters the conformation of the U2AF complex bound to RNA, resulting in a differential ability to effectively recruit the U2 complex. To confirm this model, we identified and validated a set of gain-of-function splice junctions in genes contributing to hemopoiesis and cell cycle, characterized by increased binding of U2AF1 S34F mutant and parallel decreased binding of U2AF2. In summary, we identified novel RNA sequence and structure determinants of U2AF complex conformation, uncovered by the binding alterations induced by the U2AF1 S34F mutation. Our data further dissect the complexities of post-transcriptional regulation and provide the basis for development of U2AF directed cancer therapies. Disclosures Hunck: B**hringer-Ingelheim Foundation.: Other: During my stay in the Halene Lab I was founded by an MD fellowship.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-02
    Description: Background: Current criteria used to assess response lag behind the extraordinary evolution in the treatment of multiple myeloma (MM) patients (pts), and more sensitive techniques are being explored to detect true minimal residual disease (MRD) for new complete remission (CR) definitions. In recent years, next generation sequencing (NGS) technologies have emerged. NGS of immunoglobulin (IgH) gene rearrangements are very sensitive and also allow the identification of small subclonal population that can be monitored over time during treatment, something not possible with flow cytometry or PCR. However, the patchy pattern of bone marrow infiltration observed in MM leads to some degree of uncertainty regarding MRD-negative results, irrespectively of the technique adopted. This highlights the value of applying "liquid biopsy" as a non-invasive strategy for monitoring MRD through the analysis of circulating cell-free tumor DNA (ctDNA). The objective of the current study was to measure residual tumor burden in sequential plasma samples of a cohort of MM pts by NGS of the IgH gene rearrangements. Methods: We retrospectively analyzed 14 MM pts homogeneously treated between 2011 and 2015 with all clinical data available. We obtained serial tumor and plasma samples at diagnosis and at specified time points during treatment cycles and up to 24 months of follow-up. Genomic DNA (gDNA) was extracted from immunomagnetically selected CD138+ plasma cells at diagnosis (n=14). ctDNA was extracted from 500uL of plasma (Qiagen) at diagnosis (n=14) and at follow-up time points (n=58). IgH gene rearrangements were amplified, quality assessed (Agilent hsDNA kit) and sequenced on Ion Torrent PGM as previously described (Gimondi et al., ASH 2015). Raw reads were filtered for quality, length (〉250bp) and presence of both forward and reverse primers. Reads were subsequently aligned using IgBlast against IMGT germline database and aggregated into clonotypes based on identity of CDR3, V and J segments (MigMap). Post-processing analyses were performed using VDJtools and customized R scripts. Results: PCR products quality assessment from ctDNA amplification of the entire IgH-VDJ region revealed the presence of both short (150-250bp) and long amplicons (310-360bp). Raw reads were subjected to filtering using our custom bioinformatic workflow to retain only complete IgH-VDJ gene rearrangements and discard low-quality reads. Three pts could not be evaluated due to low quality sequencing reads in all samples. At least 3 follow-up time points were available for all the remaining 11 pts whereas 6 pts had 4 time points. At diagnosis, both plasma and tumor samples revealed a high level of heterogeneity (range 1980-7753 clonotypes) with only a small fraction of shared clonotypes (346±262, mean±SD). Among the shared ones, the clonotype with the highest frequency in plasma corresponded to the tumor-associated one identified in CD138+ cells. Interestingly, in the plasma of 3 pts, additional clonotypes were detected at relatively high frequencies (range 1-16%) suggesting the presence of subclones. IgH-NGS at follow-up time points revealed that the clonotype identified at diagnosis (range 4-31% of total reads) could be easily tracked over time in plasma samples, at frequencies as low as 0.00001%. Frequencies of the tumor-associated IgH gene rearrangement in plasma showed a patient-specific modulation and reflected the tumor burden assessed according to the International Myeloma Working Group-Uniform Response Criteria. At the time of CR, the tumor-associated clonotype was undetectable in the plasma of pts who would not subsequently relapse. In patients that would lately experience progressive disease, the tumor specific clonotype was still detectable at low frequencies (range 0.00001-0.03%) in all plasma samples suggesting that liquid biopsy can be used for MRD monitoring. Conclusions: Despite the limited number of pts and follow-up samples analyzed, we demonstrate that NGS of IgH gene rearrangements from ctDNA can be used for MM disease monitoring, thus representing a non-invasive alternative strategy for clinical management. The analysis of retrospectively collected plasma samples revealed that ctDNA quality is essential for a NGS characterization of IgH gene rearrangements. Plasma samples collection and processing represent critical steps that need to be considered designing prospective liquid biopsy studies. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-11-13
    Description: The murine host has remained a readily available and ethically acceptable model for the study of human diseases and therapeutic testing. Immunodeficient mouse models support engraftment of human hematopoietic stem cells (HSC) but with limitation in efficiency and mature lineage representation. Combined knock-in of several non-crossreactive human cytokines (M-CSF, IL3/GM-CSF, and Thrombopoietin) into the corresponding murine loci in the SRG strain (in short termed "MISTRG") has enhanced engraftment and maintenance of human HSCs with multi-lineage differentiation (Rongvaux et al. Annu Rev Immunol 2013, Deng et al. Nature 2015, Saito et al. Blood 2016, Theocharides et al. Haematologica 2016). Despite robust HSC engraftment and myelo- and erythropoiesis in bone marrow (BM), all humanized immunodeficient mouse models lack of mature human red blood cells (RBC), platelets, and myeloid cells in peripheral blood (PB) (Rahmig et al. Stem Cell Reports 2016, Yurino et al. Stem Cell Reports 2016, Song et al. Nat Commun 2019). Yet, full maturation and representation of all myeloid lineages in PB is essential to study diseases of the HSC, such as MDS, and of the RBC, such as sickle cell anemia or malaria. With universal absence of a murine adaptive immune system the culprit is likely the murine host's innate immune system. Previous studies have shown that treatment of engrafted mice with liposomal clodronate that abrogates murine (and human) macrophages, with or without cobra venom factor that eliminates complement, can increase mature human circulating RBC, but only transiently and with significant toxicity. We first sought to determine the site of huRBC sequestration and destruction. Intravital imaging after injection of CFSE labelled huRBC identified the murine liver as the major site of RBC destruction. While muRBC rapidly circulate through the liver circulation, huRBC have greatly increased transit times and are sequestered in liver vessels. We hypothesized that humanization of the murine host's liver could potentially alleviate huRBC sequestration and significantly increase circulating huRBC. In previous studies deletion of fumarylacetoacetate hydrolase (Fah) in the Rag-/-Il2rg-/- background has allowed humanization of the liver and served to study diseases such as malaria (Vaughan et al. J Clin Invest 2012). The liver is the site of synthesis of numerous proteins, some of which directly impact hematopoiesis and blood cells, such as complement. We deleted the Fah gene via CRISPR/Cas9 in MISTRG mice and crossed MISTRG-Fah-/- mice to homozygosity (MISTRGFah). MISTRGFah are viable, fertile, and healthy when maintained on drinking water supplemented with 2-(2-nitro-4-trifluoromethylbenzoyl)-1, 3-cyclohexanedione (NTBC), that blocks tyrosine metabolism upstream of Fah and prevents buildup of hepatotoxic metabolites. At 8 weeks of age we implanted MISTRGFah mice with commercially available, adult human hepatocytes (HuHep) via direct injection into the splenic vein, followed by gradual withdrawal of NTBC water. Regulated buildup of intracellular fumarylacetoacetate results in death of murine Fah-/- hepatocytes and regeneration with HuHep with up to 90% repopulation by HuHep (Azuma et al. Nature biotechnology 2007). When plasma human albumin levels reached 2mg/dL, indicative of significant (~80%) HuHep repopulation, we sublethally (80cGy) irradiated HuHepMISTRGFah mice and engrafted each mouse with 105 fetal liver (FL) derived CD34+ cells. 10 weeks post transplantation, mice were analyzed for engraftment and specifically erythroid maturation in PB. HuHepMISTRGFah mice had significantly higher levels of BM and interestingly spleen erythropoiesis and circulating huRBC in PB (Fig.1 a). CD235a+ huRBC in HuHepMISTRGFah mice are enucleated (Hoechst neg) and mature as evident by loss of CD49d (ITGA4) and gain of Band3 staining (Hu et al. Blood 2013) (Fig.1 b). Interestingly, human erythroid cells in MISTRG but not HuHepMISTRGFah mice are coated with murine complement C3 (muC3) (Fig.1 c) suggesting that liver humanization results in loss of muC3 expression. In conclusion, we have generated the first humanized mouse model with fully mature, circulating huRBC when engrafted with human CD34+ stem and progenitor cells. Ongoing studies are testing the applicability of this model to MDS and sickle cell disease. Disclosures Flavell: SMOC: Equity Ownership; Zai labs: Consultancy; GSK: Consultancy; Artizan Biosciences: Equity Ownership; Troy: Equity Ownership; Rheos Biomedicines: Equity Ownership.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-13
    Description: Hematopoietic stem cell (HSC) self-renewal and lineage output are orchestrated by multiple regulatory layers, including RNA modifications. N6-methyladenosine (m6A) is an abundant modification found in RNAs which affects the translation and stability of modified transcripts. The effects of m6A are determined by m6A writers (install m6A), erasers (remove m6A) and readers (recognize m6A). In embryonic stem cells, deletion of the m6A writer METTL3 enforces a naïve pluripotent state. This raises the question of whether m6A RNA methylation analogously regulates stem cell self-renewal and differentiation in somatic stem cells such as HSCs. Using a Vav-Cre/Mettl3 (VCM3) hematopoietic-specific knockout mouse model, we show that loss of the RNA m6A writer METTL3 in fetal HSCs results in hematopoietic failure and perinatal lethality. At E14.5 (FL) hematopoiesis loss of Mettl3/m6A results in hematopoietic failure with expansion of Lin-Sca-1+c-Kit+ (LSK) hematopoietic stem and progenitor cells (HSPCs) that are defective in the production of progenitors and mature blood cells, as evidenced by failure to rescue lethally irradiated congenic recipient mice in transplant experiments. The relative defect I hematopoiesis was further demonstrated by competitive transplant experiments, in which transplanted KO FL were consistently out-competed by WT FL. Interestingly, BrdU/7AAD labeling reveals a significant proliferative defect with reduced BrdU uptake in VCM3 KO FL cells, and specifically in Lin-c-Kit+Sca-1- (LK) progenitor cells. RNA-seq analysis of FL LSK cells reveals that loss of m6A results in upregulation of multiple 2'-5'-oligoadenylate synthetase (OAS) family genes. Interestingly, the majority of OAS family genes are not m6A modified in several m6A sequencing data sets. We therefore hypothesized that the OAS genes might be regulated at the transcriptional level. We performed cleavage under targets and release using nuclease (CUT&RUN) analysis and found that OAS family genes are transcriptionally activated, as evidenced by significant increase in H3K4 trimethylation (H3K4me3) at their respective promoter regions. The OAS family genes are activated by the presence of double stranded RNA (dsRNA), which can arise either endogenously or as a pathogen-associated trigger of the innate immune system in the context of viral infection. The dsRNA response includes three major response mechanisms. First, OAS genes facilitate RNase L dimerization, which mediates cleavage of cellular tRNA and rRNA, resulting in translation and proliferation arrest. Second, activation of the PKR/eIF2a pathway also results in translation arrest. Lastly, activation of the MDA-5/RIG-I/MAVS response induces interferon signaling, which further limits cellular proliferation. Staining of VCM3 WT & KO FL cells with the dsRNA-specific J2 antibody directly demonstrated significant accumulation of dsRNA in KO FL cells. We further demonstrated activation of the OAS/RNaseL axis in KO cells by quantification of tRNA-His-36 cleavage, which acts as a sensitive marker of RNase L activity. Phosphorylation of both PKR and eIF2a in KO cells demonstrated enhanced activity of this pathway. Lastly, we found a significant upregulation of interferon pathway genes in KO cells, and demonstrated that CRISPR mediated knockout of Mavs in VCM3 KO FL cells diminishes the activity of interferon response genes and rescues the Mettl3 KO phenotype in colony forming unit (CFU) assays. These results suggest that in the absence of m6A, endogenous dsRNA formation is enhanced, resulting in an associated inflammatory response which partially accounts for the hematopoietic defect observed in Mettl3 KO mice. In conclusion, our study suggests a novel, protective role for the m6A RNA modification in preventing endogenous dsRNA formation and aberrant activation of a detrimental innate immune response during mammalian hematopoietic development. Disclosures Fan: IsoPlexis: Other: served on the scientific discovery board, Patents & Royalties; Singleron Biotechnologies: Other: served on the Scientific Advisory Board; BioTechne: Other: served on the Scientific Advisory Board. Flavell:Rheos Biomedicines: Equity Ownership; GSK: Consultancy; Artizan Biosciences: Equity Ownership; Troy: Equity Ownership; SMOC: Equity Ownership; Zai labs: Consultancy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-11-29
    Description: Historically, the differential diagnosis between different nodal peripheral T-cell lymphoma (PTCL) subtypes based on morphological and phenotypic grounds has posed great challenges. In the last few years, our knowledge of the molecular bases of different PTCLs has significantly expanded. However, peripheral T-cell lymphomas not otherwise specified (PTCL-NOSs) are still regarded to as a heterogeneous category encompassing PTCL cases not fitting other, more homogeneous, subtypes. In fact, PTCL-NOS is one of the few lymphoma subtypes where no recurrent driver mutations have been reported so far. In order to better characterized the PTCL-NOS genomic landscape, we decided to investigate 11 PTCL-NOS patients by a whole genome sequencing (WGS) approach (median coverage 27X). Ten out of eleven samples were collected from FFPE blocks and 2 were removed from analysis: one due to low cancer cell fraction (CCF) and the other based on cluster generation issues during sequencing likely caused by a hyper-fragmented DNA. Among the remaining 9 cases, we extracted 59,617 somatic base substitutions (range 2,471-10,756, median 6,358 per patient) and 20,531 small insertion-deletions (indels) (range 84-6,397, median 1,580). We were able to characterize the spectrum of FFPE-induced artefacts, mostly composed of point mutations and indels within LINE-1 (L1) elements, predominantly of the L1PA family. This is a crucial quality control step that could be applied to similar future studies from archive samples. Four samples were heavily involved by FFPE-related artefacts and were excluded for this reason. Using a non-negative matrix factorization (NNMF) algorithm we investigated for the first time the PTCL-NOS mutational signature landscape. We did not find novel processes in this entity, but rather known processes operative in other lymphoid malignancies. Among those: signatures 1 and 5, deriving from the age-related process of spontaneous deamination of methylated cytosines; signatures 2 and 13 deriving from aberrant activity of the APOBEC family of DNA deaminases; signatures 17 and 8, pertaining to two yet poorly characterized processes. The contribution of different processes to the mutational spectrum of each case was profoundly heterogeneous. Combining our data set with 64 previously published whole exome sequencing cases (23 ALCL, 15 AITLs, 9 PTCL-NOSs and 16 EATL-II), we confirmed the lack of recurrent driver mutations among PTCL-NOS. Taking advantage of WGS data, we therefore focused on structural variants (SVs: inversions, translocations, internal tandem duplications and deletions) and copy number alterations (CNAs). We found 372 SVs, with a stunning median of 73 per sample (range 56-86). Even more interesting, at least one complex event was observed in all but one patients, including one whole genome duplication (WGD) and five chromothripsis events in three patients, suggesting a critical role of SVs in shaping the PTCL-NOS genome. We found that known onco-drivers were recurrently disrupted by such events: the most frequent target was CDKN2A, deleted in 4 out of 5 patients, 2 of which carried homozygous deletions. Interestingly, PTEN loss was observed in 2 out of 4 CDKN2A-deleted patients. Given the high prevalence of these deletions, we extended our observation to an independent validation set of ALCLs (n=56), AITL (n=22) and PTCL-NOS (n=59) investigated by FISH (n=36), next generation sequencing (n=25) or SNP6 array series (n=76). Overall, CDKN2A was deleted in 22/59 (37%) PTCL-NOSs cases, and in 17/22 (77%) both alleles were lost. PTEN was deleted in 12/59 (20%) PTCL-NOS cases, all of which also carried a CDKN2A loss. Strikingly, the co-occurrence of CDKN2A and PTEN was found only among PTCL-NOS, and in none of the other entities. With the limitations of the small sample size, the presence of CDKN2A bi-allelic deletions was associated with inferior survival (25% [95% CI: 9-66%] 5-y OS for deleted cases vs 52% [95% CI: 28-96%] for wt/hemizygous cases, p=0.042) among patients treated with an autologous bone marrow transplant front line program for advance stage and high-risk disease (n=19). Our observations point at SVs as a main driver of PTCL-NOS, often involving known cancer genes and their downstream pathways. Furthermore, our data highlighted recurrent gene deletions that may be relevant for differential diagnosis within this category of lymphomas. Disclosures Bolli: Celgene: Honoraria. Chiappella:Roche: Other: lecture fees; Amgen: Other: lecture fees; Janssen: Membership on an entity's Board of Directors or advisory committees, Other: lecture fees; Nanostring: Other: lecture fees; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: lecture fees; Teva: Other: lecture fees. Corradini:Celgene: Honoraria, Other: Advisory Board & Lecturer; Novartis: Honoraria, Other: Advisory Board & Lecturer; Roche: Honoraria, Other: Advisory Board & Lecturer; Sanofi: Honoraria, Other: Advisory Board & Lecturer; Gilead: Honoraria, Other: Advisory Board & Lecturer; Sandoz: Other: Advisory Board; Abbvie: Honoraria, Other: Advisory Board & Lecturer; Takeda: Honoraria, Other: Advisory Board & Lecturer; Amgen: Honoraria, Other: Advisory Board & Lecturer; Janssen: Honoraria, Other: Lecturer.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-11-05
    Description: In vivo models of human erythropoiesis with generation of circulating mature human red blood cells (huRBC) have remained elusive, limiting studies of primary human red cell disorders. In our prior study, we have generated the first combined cytokine-liver humanized immunodeficient mouse model (huHepMISTRG-Fah) with fully mature, circulating huRBC when engrafted with human CD34+ hematopoietic stem and progenitor cells (HSPCs)1. Here we present for the first time a humanized mouse model of human sickle cell disease (SCD) which replicates the hallmark pathophysiologic finding of vaso-occlusion in mice engrafted with primary patient-derived SCD HSPCs. SCD is an inherited blood disorder caused by a single point mutation in the beta-globin gene. Murine models of SCD exclusively express human globins in mouse red blood cells in the background of murine globin knockouts2 which exclusively contain murine erythropoiesis and red cells and thus fail to capture the heterogeneity encountered in patients. To determine whether enhanced erythropoiesis and most importantly circulating huRBC in engrafted huHepMISTRG-Fah mice would be sufficient to replicate the pathophysiology of SCD, we engrafted it with adult SCD BM CD34+ cells as well as age-matched control BM CD34+ cells. Overall huCD45+ and erythroid engraftment in BM (Fig. a, b) and PB (Fig. c, d) were similar between control or SCD. Using multispectral imaging flow cytometry, we observed sickling huRBCs (7-11 sickling huRBCs/ 100 huRBCs) in the PB of SCD (Fig. e) but not in control CD34+ (Fig. f) engrafted mice. To determine whether circulating huRBC would result in vaso-occlusion and associated findings in SCD engrafted huHepMISTRG-Fah mice, we evaluated histological sections of lung, liver, spleen, and kidney from control and SCD CD34+ engrafted mice. SCD CD34+ engrafted mice lungs showed an increase in alveolar macrophages (arrowheads) associated with alveolar hemorrhage and thrombosis (arrows) but not observed control engrafted mice (Fig. g). Spleens of SCD engrafted mice showed erythroid precursor expansion, sickled erythrocytes in the sinusoids (arrowheads), and vascular occlusion and thrombosis (arrows) (Fig. h). Liver architecture was disrupted in SCD engrafted mice with RBCs in sinusoids and microvascular thromboses (Fig. i). Congestion of capillary loops and peritubular capillaries and glomeruli engorged with sickled RBCs was evident in kidneys (Fig. j) of SCD but not control CD34+ engrafted mice. SCD is characterized by ineffective erythropoiesis due to structural abnormalities in erythroid precursors3. As a functional structural unit, erythroblastic islands (EBIs) represent a specialized niche for erythropoiesis, where a central macrophage is surrounded by developing erythroblasts of varying differentiation states4. In our study, both SCD (Fig. k) and control (Fig. l) CD34+ engrafted mice exhibited EBIs with huCD169+ huCD14+ central macrophages surrounded by varying stages of huCD235a+ erythroid progenitors, including enucleated huRBCs (arrows). This implies that huHepMISTRG-Fah mice have the capability to generate human EBIs in vivo and thus represent a valuable tool to not only study the effects of mature RBC but also to elucidate mechanisms of ineffective erythropoiesis in SCD and other red cell disorders. In conclusion, we successfully engrafted adult SCD patient BM derived CD34+ cells in huHepMISTRG-Fah mice and detected circulating, sickling huRBCs in the mouse PB. We observed pathological changes in the lung, spleen, liver and kidney, which are comparable to what is seen in the established SCD mouse models and in patients. In addition, huHepMISTRG-Fah mice offer the opportunity to study the role of the central macrophage in human erythropoiesis in health and disease in an immunologically advantageous context. This novel mouse model could therefore serve to open novel avenues for therapeutic advances in SCD. Reference 1. Song Y, Shan L, Gybli R, et. al. In Vivo reconstruction of Human Erythropoiesis with Circulating Mature Human RBCs in Humanized Liver Mistrg Mice. Blood. 2019;134:338. 2. Ryan TM, Ciavatta DJ, Townes TM. Knockout-transgenic mouse model of sickle cell disease. Science. 1997;278(5339):873-876. 3. Blouin MJ, De Paepe ME, Trudel M. Altered hematopoiesis in murine sickle cell disease. Blood. 1999;94(4):1451-1459. 4. Manwani D, Bieker JJ. The erythroblastic island. Curr Top Dev Biol. 2008;82:23-53. Disclosures Xu: Seattle Genetics: Membership on an entity's Board of Directors or advisory committees. Flavell:Zai labs: Consultancy; GSK: Consultancy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...