ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of fracture 77 (1996), S. 305-321 
    ISSN: 1573-2673
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In modeling a crack along a distinct interface between dissimilar elastic materials, the ratio of mode I to mode II stress intensity factors or energy release rates is typically not unique, due to oscillatory behavior of near-tip stresses and displacements. Although methods have been developed for comparing mode mixes for isotropic interfacial fracture problems, this behavior currently limits the applicability of interfacial fracture mechanics in predicting delamination in layered materials without isotropic symmetry. The virtual crack closure technique (VCCT) is a method used to extract mode I and mode II energy release rate components from numerical fracture solutions. Energy release rate components extracted from an oscillatory solution using the VCCT are not unique due to their dependence on the virtual crack extension length, Δ. In this work, a method is presented for using the VCCT to extract Δ-independent energy release rate quantities for the case of an interface crack between two in-plane orthotropic materials. The method does not involve altering the analysis to eliminate its oscillatory behavior and it is similar to existing methods for extracting a mode mix from isotropic interfacial fracture models. Knowledge of near-tip fields is used to determine the explicit Δ dependence of energy release rate parameters. Energy release rates are then defined that are separated from the oscillatory dependence on Δ. A modified VCCT using these energy release rate definitions is applied to results from finite element analyses, showing that Δ-independent energy release rate quantities result. The modified technique has potential as a consistent method for extracting a mode mix from numerical solutions. The Δ-independent energy release rate quantities extracted using this technique can also aid numerical modelers, serving as guides for testing the convergence of finite element models. Direct applications of this work include the analysis of planar composite delamination problems, where plies or debonded laminates are modeled as in-plane orthotropic materials.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-01-01
    Print ISSN: 0376-9429
    Electronic ISSN: 1573-2673
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-04
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-02-01
    Print ISSN: 1073-5623
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-07-08
    Print ISSN: 0960-1317
    Electronic ISSN: 1361-6439
    Topics: Electrical Engineering, Measurement and Control Technology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-09-13
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Wiley on behalf of American Ceramic Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: This work concerns fracture mechanics modeling of composite delamination problems. In order to predict delamination resistance, an applied stress intensity factor, K, or energy release rate, G, must be compared to a mode-dependent critical value of K or G from experiment. In the interfacial fracture analysis of most applications and some tests, the mode of crack extension is not uniquely defined. It is instead a function of distance from the crack tip due to the oscillating singularity existing at the tip. In this work, a consistent method is presented of extracting crack extension modes in such cases. In particular, use of the virtual crack closure technique (VCCT) to extract modes of crack extension is studied for cases of a crack along the interface between two in-plane orthotropic materials. Modes of crack extension extracted from oscillatory analyses using VCCT are a function of the virtual crack extension length, delta. Most existing efforts to obtain delta-independent modes of crack extension involve changing the analysis in order to eliminate its oscillatory nature. One such method involves changing one or more properties of the layers to make the oscillatory exponent parameter, epsilon, equal zero. Standardized application of this method would require consistent criteria for identifying which properties can be altered without changing the physical aspects of the problem. Another method involves inserting a thin homogeneous layer (typically referred to as a resin interlayer) along the interface and placing the crack within it. The drawbacks of this method are that it requires increased modeling effort and introduces the thickness of the interlayer as an additional length parameter. The approach presented here does not attempt to alter the interfacial fracture analysis to eliminate its oscillatory behavior. Instead, the argument is made that the oscillatory behavior is non-physical and that if its effects were separated from VCCT quantities, then consistent, delta-independent modes of crack extension could be defined. Knowledge of the near-tip fields in a planar orthotropic material interfacial fracture analysis is used to determine the explicit delta dependence of VCCT parameters. Once this delta dependence is determined, energy release rates are defined with this delta dependence factored out. This modified VCCT method is applied to results from two finite element test cases. It is shown that, as predicted, delta-independent modes of crack extension result. The modified VCCT approach shows potential as a consistent method of extracting crack extension modes. It uses the same information from a finite element analysis (i.e., nodal forces and displacements) as the traditional VCCT method does. The A-independent modes extracted using the modified VCCT approach can also be used as guides to test the convergence of finite element solutions.
    Keywords: STRUCTURAL MECHANICS
    Type: Hampton Univ., 1994 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; p 61
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: The normal stress ratio theory for crack extension in anisotropic materials is studied analytically and experimentally. The theory is applied within a microscopic-level analysis of a single center notch of arbitrary orientation in a unidirectional composite material. The bulk of the analytical work of this study applies an elasticity solution for an infinite plate with a center line to obtain critical stress and crack growth direction predictions. An elasticity solution for an infinite plate with a center elliptical flaw is also used to obtain qualitative predictions of the location of crack initiation on the border of a rounded notch tip. The analytical portion of the study includes the formulation of a new crack growth theory that includes local shear stress. Normal stress ratio theory predictions are obtained for notched unidirectional tensile coupons and unidirectional Iosipescu shear specimens. These predictions are subsequently compared to experimental results.
    Keywords: COMPOSITE MATERIALS
    Type: NASA-CR-180287 , NAS 1.26:180287 , CCMS-87-09 , VPI-E-87-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: In the analysis of an interface crack between dissimilar elastic materials, the mode of crack extension is typically not unique, due to oscillatory behavior of near-tip stresses and displacements. This behavior currently limits the applicability of interfacial fracture mechanics as a means to predict composite delamination. The Virtual Crack Closure Technique (VCCT) is a method used to extract mode 1 and mode 2 energy release rates from numerical fracture solutions. The mode of crack extension extracted from an oscillatory solution using the VCCT is not unique due to the dependence of mode on the virtual crack extension length, Delta. In this work, a method is presented for using the VCCT to extract Delta-independent crack extension modes for the case of an interface crack between two in-plane orthotropic materials. The method does not involve altering the analysis to eliminate its oscillatory behavior. Instead, it is argued that physically reasonable, Delta-independent modes of crack extension can be extracted from oscillatory solutions. Knowledge of near-tip fields is used to determine the explicit Delta dependence of energy release rate parameters. Energy release rates are then defined that are separated from the oscillatory dependence on Delta. A modified VCCT using these energy release rate definitions is applied to results from finite element analyses, showing that Delta-independent modes of crack extension result. The modified technique has potential as a consistent method for extracting crack extension modes from numerical solutions. The Delta-independent modes extracted using this technique can also serve as guides for testing the convergence of finite element models. Direct applications of this work include the analysis of planar composite delamination problems, where plies or debonded laminates are modeled as in-plane orthotropic materials.
    Keywords: COMPOSITE MATERIALS
    Type: NASA-TM-109180 , NAS 1.15:109180
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...