ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Journal of Raman Spectroscopy 26 (1995), S. 799-812 
    ISSN: 0377-0486
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Infrared spectra of thiocyanatoethene in the 4000-400 cm-1 region in the vapour and liquid states and of the amorphous and crystalline solids at low temperatures were obtained. Additional IR spectra of the compound were recorded when isolated in argon and nitrogen matrices at 5 K using the hot nozzle technique. Raman spectra in the liquid phase at various temperatures were recorded and the amorphous and crystalline solids were investigated at liquid nitrogen temperature. Microwave spectra of thiocyanatoethene were recorded in the 10-39 GHz region by means of Stark modulation. Areas of special interest were also investigated by use of the RFMWDR double resonance technique. Ab initio quantum chemical calculations were carried out with the 6 - 31G* basis set.The spectral data were interpreted in terms of an equilibrium in the vapour and liquid states between a syn and a gauche conformer, while syn was the only conformer present in the crystal. An approximate enthalpy difference of 3 - 6 kJ mol-1 in the vapour and 5.7 ± 1.0 kJ mol-1 in the liquid was determined, with the syn conformer being the more stable. The microwave spectrum of the syn conformer was assigned, giving rotational constants in good agreement with the results of the ab initio calculations, whereas we were not able to assign unambiguously the spectrum of the gauche conformer. The internal energy difference between the syn and gauche conformers was determined to be 4.4 ± 1.0 kJ mol-1.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-17
    Description: Two Rivers Platinum Mine, situated on the southern sector of the eastern limb of the Bushveld Complex, extracts Platinum Group Elements (PGE) from the UG-2 chromitite layer. A trial operation of the Merensky Reef (MR) exposed unusual occurrences of mela-gabbronoritic lenses, ‘brown sugar norite’ (BSN in mine terminology), within the pyroxenite of the hanging wall. The BSN is a fine-grained mela-gabbronorite, which appears to only occur where the upper chromitite stringer of the Merensky Reef unit is present, and forms laterally inconsistent, flat lenses. Textural features, mineral chemistry of the various rock types, Sr analyses of plagioclase separates and whole rock geochemistry indicate multiple magma injections, fractionation and disequilibrium crystallization of the magma within the Merensky interval. Whole rock MgO and enstatite content of orthopyroxene are higher in BSN compared with the surrounding Merensky Reef pyroxenite, thus supporting the notion of the BSN having formed from a more primitive magma. Both the pyroxenite and BSN plagioclase have 87 Sr/ 86 Sr ratios representative of Critical Zone magma; that of the BSN has a lower initial 87 Sr/ 86 Sr isotope ratio relative to that of the pyroxenite, suggesting a more primitive magma source. It is suggested that the unusual, discontinuous BSN lenses within pyroxenite may have formed by magmatic erosion of a new magma injection, which affected the crystal mush of the earlier deposited BSN layer. This resulted in isolated lenses of relict, but more primitive orthopyroxene of the BSN in a residual plagioclase-rich melt from an earlier pyroxenitic MR magma. In both rock types (MR pyroxenite and BSN), the PGE occur as discrete platinum-group minerals (PGM), and in solid solution in sulphides. At Two Rivers Platinum Mine, the presence of PGE in sulphides has been identified by EMPA and LA-ICP-MS. The PGE occur mineralogically either in solid solution or as PGM inclusions of different size. Pentlandite, chalcopyrite, pyrrhotite and rare pyrite occur disseminated as individual grains with associated PGM throughout the Merensky pyroxenite interval, but more enriched near the bottom and top chromitite stringers. PGM encountered are moncheite, platarsite and irarsite, relatively enriched in Pt, but poor in Pd and Rh. Our results show that most of the Pd and Rh are incorporated in pentlandite, whereas pyrrhotite, chalcopyrite, and pyrite are almost devoid of PGE. Textural features of the encountered PGM grains suggest their redistribution through late stage magmatic (probably hydrothermal) processes. The BSN contains relatively little if any base metal sulphides and PGM, indicating its formation from magma depleted in PGE.
    Print ISSN: 1012-0750
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-08-23
    Print ISSN: 0108-7673
    Electronic ISSN: 2053-2733
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-08-23
    Print ISSN: 0108-7673
    Electronic ISSN: 2053-2733
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-19
    Description: Absorption Ångstrom exponents (AAE) calculated from filter-based absorption measurements are often used to give information on the origin of the ambient aerosol, for example to distinguish between urban pollution and biomass burning aerosol. Filter-based absorption measurements are a widely used method and are commonly used at aerosol monitoring stations globally. Several correction algorithms are used to account for the artifacts associated with filter-based absorption techniques. These algorithms are of profound importance when determining the absolute amount of absorption by the aerosol. However, this study shows that there are significant differences between the AAEs calculated from these corrections. The study also shows that the difference between AAEs calculated using different corrections can lead to conflicting conclusions on the type of aerosol for the same data set. In this work the AAEs were calculated from data measured with a three-wavelength Particle Soot Absorption Photometer (PSAP) at Elandsfontein on deployed on the South African Highveld for 23 months. The sample air of the PSAP was diluted to prolong filter change intervals. The dilution-corrected PSAP showed a good agreement with a non-diluted MAAP. Thus, the study also shows that the applicability of the PSAP can be extended to remote sites are not often visited or suffer from high levels of pollution.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-12-21
    Description: In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-10-15
    Description: This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. The median global primary OA (POA) source strength is 56 Tg a−1 (range 34–144 Tg a−1) and the median SOA source strength (natural and anthropogenic) is 19 Tg a−1 (range 13–121 Tg a−1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a−1 (range 16–121 Tg a−1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a−1; range 13–20 Tg a−1, with one model at 37 Tg a−1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6–2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8–9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a−1 (range 28–209 Tg a−1), which is on average 85% of the total OA deposition. Fine aerosol organic carbon (OC) and OA observations from continuous monitoring networks and individual field campaigns have been used for model evaluation. At urban locations, the model–observation comparison indicates missing knowledge on anthropogenic OA sources, both strength and seasonality. The combined model–measurements analysis suggests the existence of increased OA levels during summer due to biogenic SOA formation over large areas of the USA that can be of the same order of magnitude as the POA, even at urban locations, and contribute to the measured urban seasonal pattern. Global models are able to simulate the high secondary character of OA observed in the atmosphere as a result of SOA formation and POA aging, although the amount of OA present in the atmosphere remains largely underestimated, with a mean normalized bias (MNB) equal to −0.62 (−0.51) based on the comparison against OC (OA) urban data of all models at the surface, −0.15 (+0.51) when compared with remote measurements, and −0.30 for marine locations with OC data. The mean temporal correlations across all stations are low when compared with OC (OA) measurements: 0.47 (0.52) for urban stations, 0.39 (0.37) for remote stations, and 0.25 for marine stations with OC data. The combination of high (negative) MNB and higher correlation at urban stations when compared with the low MNB and lower correlation at remote sites suggests that knowledge about the processes that govern aerosol processing, transport and removal, on top of their sources, is important at the remote stations. There is no clear change in model skill with increasing model complexity with regard to OC or OA mass concentration. However, the complexity is needed in models in order to distinguish between anthropogenic and natural OA as needed for climate mitigation, and to calculate the impact of OA on climate accurately.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-06-06
    Description: Recent studies have shown very high frequencies of atmospheric new particle formation in different environments in South Africa. Our aim here was to investigate the causes for two or three consecutive daytime nucleation events, followed by subsequent particle growth during the same day. We analysed 108 and 31 such days observed in a polluted industrial and moderately polluted rural environments, respectively, in South Africa. The analysis was based on two years of measurements at each site. After rejecting the days having notable changes in the air mass origin or local wind direction, i.e. two major reasons for observed multiple nucleation events, we were able to investigate other factors causing this phenomenon. Clouds were present during, or in between most of the analysed multiple particle formation events. Therefore, some of these events may have been single events, interrupted somehow by the presence of clouds. From further analysis, we propose that the first nucleation and growth event of the day was often associated with the mixing of a residual air layer rich in SO2 (oxidized to sulphuric acid) into the shallow surface-coupled layer. The second nucleation and growth event of the day usually started before midday and was sometimes associated with renewed SO2 emissions from industrial origin. However, it was also evident that vapours other than sulphuric acid were required for the particle growth during both events. This was especially the case when two simultaneously growing particle modes were observed. Based on our analysis, we conclude that the relative contributions of estimated H2SO4 and other vapours on the first and second nucleation and growth events of the day varied from day to day, depending on anthropogenic and natural emissions, as well as atmospheric conditions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-02-15
    Description: This study presents a total of four years of sub-micron aerosol particle size distribution measurements in the southern African savannah, an environment with few previous observations covering a full seasonal cycle and the size range below 100 nm. During the first 19 months, July 2006–January 2008, the measurements were carried out at Botsalano, a semi-clean location, whereas during the latter part, February 2008–May 2010, the measurements were carried out at Marikana (approximately 150 km east of Botsalano), which is a more polluted location with both pyrometallurgical industries and informal settlements nearby. The median total concentration of aerosol particles was more than four times as high at Marikana than at Botsalano. In the size ranges of 12–840 nm, 50–840 nm and 100–840 nm the median concentrations were 1856, 1278 and 698 particles cm−3 at Botsalano and 7805, 3843 and 1634 particles cm−3 at Marikana, respectively. The diurnal variation of the size distribution for Botsalano arose as a result of frequent regional new particle formation. However, for Marikana the diurnal variation was dominated by the morning and evening household burning in the informal settlements, although regional new particle formation was even more frequent than at Botsalano. The effect of the industrial emissions was not discernible in the size distribution at Marikana although it was clear in the sulphur dioxide diurnal pattern, indicating the emissions to be mostly gaseous. Seasonal variation was strongest in the concentration of particles larger than 100 nm, which was clearly elevated at both locations during the dry season from May to September. In the absence of wet removal during the dry season, the concentration of particles larger than 100 nm had a correlation above 0.7 with CO for both locations, which implies incomplete burning to be an important source of aerosol particles during the dry season. However, the sources of burning differ: at Botsalano the rise in concentration originates from regional wild fires, while at Marikana domestic heating in the informal settlements is the main source. Air mass history analysis for Botsalano identified four regional scale source areas in southern Africa and enabled the differentiation between fresh and aged rural background aerosol originating from the clean sector, i.e., western sector with very few large anthropogenic sources. Comparison to size distributions published for other comparable environments in Northern Hemisphere shows southern African savannah to have a unique combination of sources and meteorological parameters. The observed strong link between combustion and seasonal variation is comparable only to the Amazon basin; however, the lack of long-term observations in the Amazonas does not allow a quantitative comparison. All the data presented in the figures, as well as the time series of monthly mean and median size distributions are included in numeric form as a Supplement to provide a reference point for the aerosol modelling community.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-05-04
    Description: South Africa holds significant mineral resources, with a substantial fraction of these reserves occurring and being processed in a large geological structure termed the Bushveld Igneous Complex (BIC). The area is also highly populated by informal, semi-formal and formal residential developments. However, knowledge of air quality and research related to the atmosphere is still very limited in the area. In order to investigate the characteristics and processes affecting sub-micron particle number concentrations and formation events, air ion and aerosol particle size distributions and number concentrations, together with meteorological parameters, trace gases and particulate matter (PM) were measured for over two years at Marikana in the heart of the western BIC. The observations showed that trace gas (i.e. SO2, NOx, CO) and black carbon concentrations were relatively high, but in general within the limits of local air quality standards. The area was characterised by very high condensation sink due to background aerosol particles, PM10 and O3 concentration. The results indicated that high amounts of Aitken and accumulation mode particles originated from domestic burning for heating and cooking in the morning and evening, while during daytime SO2-based nucleation followed by the growth by condensation of vapours from industrial, residential and natural sources was the most probable source for large number concentrations of nucleation and Aitken mode particles. Nucleation event day frequency was extremely high, i.e. 86% of the analysed days, which to the knowledge of the authors is the highest frequency ever reported. The air mass back trajectory and wind direction analyses showed that the secondary particle formation was influenced both by local and regional pollution and vapour sources. Therefore, our observation of the annual cycle and magnitude of the particle formation and growth rates during nucleation events were similar to results previously published for a semi-clean savannah site in South Africa.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...