ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Publisher
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 192 (1983), S. 87-94 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Fragments of DNA of the temperate phage P2, generated by treatment with the restriction enzyme PstI, have been cloned into the plasmid pBR322. One such fragment, which has its endpoints within phage genes T and C, carries the structural P2 int gene as well as its promoter and the phage att site. When introduced into a suitable bacterial host, the cloned fragment mediates the integration and excision of int - mutants of P2 and recombination within the phage att site in mixed infection. All these activities are independent of the orientation of the fragment within the plasmid. When introduced into minicells, the fragment produces, in addition to the products of genes D and U, a protein of 35–37,000 daltons identified as the int protein. A study of the map location of two amber int mutants, together with the sizes of the polypeptides they produce, indicates that the P2 int gene is transcribed from right to left on the P2 map, i.e. starting near gene C and proceeding toward att.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 208 (1987), S. 52-56 
    ISSN: 1617-4623
    Keywords: Excision ; dnaB ; Promoter ; Replication ; Repressor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Part of the early operon of the temperate phage P2 of Escherichia coli, including genes cox (involved in prophage excision) and B (required for phage specific DNA synthesis), was sequenced. The results are consistent with an early promoter spanning the repressor binding sites, a leader sequence of about 80 bases which overlaps the leader sequence of the repressor gene for about 30 bases, and coordinate transcription of genes cox and B with a termination signal after the B gene. In addition, the data provide amino acid sequences for the Cox and B proteins of 91 and 166 residues, respectively and reveal a hitherto undetected coding sequence between genes cox and B that has the potential to produce a very basic polypeptide of 56 residues. Slight structural similarities between the P2 Cox protein and the analogous Xis protein of phage lambda were noted and the P2 B gene product was compared with proteins that interact with the DnaB protein of E. coli.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 178 (1980), S. 91-99 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The excision of prophage P2 is controlled by two genes, int and cox. (The cox gene discussed in this report is defined by the cox class II mutants, defined by Six and Lindqvist, 1978). The combined activity of these two genes is rather inefficient, however, since only about 1% of the lysogens carrying an int + cox + prophage actually produce phage when derepressed. The efficiency of phage production (and presumably excision) can be increased 100-fold by an additional mutation called nip1 (Calendar et al., 1972), which is dominant and is located in or near the int gene. The nip1 mutation was mapped between c5, a mutation in the C gene, and an amber int mutation, int150. Phages carrying nip1 and either int150 or a cox mutation, cox3, were prepared by recombination. The nip1 mutation was found to increase excision only when it was located on the same chromosome as an active int + gene and only if cox + gene product was also available. The cox gene, known to be located between genes B and C (Lindahl and Sunshine, 1972), was further localized to a region between 77.2 to 78.1% from the conventional left end of the P2 chromosome by comparing the ability of phages with overlapping deletions to promote excision of the prophage in a P2 nip1 c5 cox3 lysogen. Other features of the integration-excision system in P2 are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 156 (1977), S. 297-302 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The possibility that a strain lysogenic for phage P2 could be brought into the so-called “antiimmune” state in which the synthesis of phage repressor is permanently turned off, was tested in the following way. Two lysogenic strains that could be derepressed at 42°C were prepared. In one, the prophage had, in addition to a temperature-sensitive repressor mutation (c5), amber mutations in the two early genes A and B. In the other, the prophage had an unknown defect that blocked expression of the A and B genes. Both strains could multiply at 42° C as well as or almost as well as a non-lysogen. After the strains had grown for several generations at 42° C, they were returned to 30° and the resynthesis of repressor was followed by measuring the restoration of immunity to super-infection. In both cases, the immunity returned slowly over a period of 2 to 3 h. In a strain made doubly lysogenic for two amA amB c5 prophages, immunity was restored at a more rapid rate, suggesting that the rate of restoration depended mainly on the number of copies of repressor gene present. Attempts to demonstrate “channeling” towards the lytic pathway in the derepressed lysogens was also negative. The temperature treatment tended instead to increase the frequency of lysogenization of superinfecting P2. Thus, the presence of a system, similar to the cro system described for phage lambda, to regulate repressor synthesis in phage P2 could not be demonstrated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Z mutants of bacteriophage P2 form clear plaques and are unable to give rise to stable lysogens in Escherichia coli C. To study the function of the Z gene in lysogenization by P2, temperature-sensitive mutants were isolated. Those that were classified as Z mutants by complementation were all “cold-sensitive” (cs); they were unable to form lysogens at 30° C, but had wild type phenotype at 42° C. When lysogens carrying such mutants, prepared at 42° C, were shifted to the lower temperature, the bacteria continued to multiply at the normal rate until they reached concentrations of about 5 × 107 per ml, at which point the viable titer began to decrease. Inactivation of the bacteria at even lower concentrations occurred if they were transferred to medium taken from overnight cultures of the same strain, suggesting that they were sensitive to some material that had accumulated in the culture medium. The lethal material was produced not only by csZ lysogens, but by all derivatives of Escherichia coli C tested, including non-lysogens, and at both 30° C and 42° C. Only csZ lysogens were sensitive to it, however, and only at the lower temperature. A preliminary characterization of the material indicates that it is heat-stable, of low molecular weight and does not adsorb to activated charcoal.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...