ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2014-07-29
    Description: Spatiotemporal variability in East African precipitation affects the livelihood of tens of millions of people. From the perspective of floods, flash droughts, and agriculture, variability on intraseasonal time scales is a critical component of total variability. The principal objective of this study is to explore subseasonal impacts of the Madden–Julian oscillation (MJO) on tropospheric circulations affecting East Africa (EA) during the long (March–May) and short (October–December) rains and associated variability in precipitation. Analyses are performed for 1979–2012 for dynamics and 1998–2012 for precipitation. Consistent with previous studies, significant MJO influence is found on wet and dry spells during the long and short rains. This influence, however, is found to vary within each season. Specifically, indices of MJO convection at 70°–80°E and 120°W are strongly associated with precipitation variability across much of EA in the early (March) and late (May) long rainy season and in the middle and late (November–December) short rainy season. In the early short rains (October) a different pattern emerges, in which MJO strength at 120°E (10°W) is associated with dry (wet) spells in coastal EA but not the interior. In April the MJO influence on precipitation is obscured but can be diagnosed in lead time associations. This diversity of influences reflects a diversity of mechanisms of MJO influence, including dynamic and thermodynamic mechanisms tied to large-scale atmospheric circulations and localized dynamics associated with MJO modulation of the Somali low-level jet. These differences are relevant to problems of subseasonal weather forecasts and climate projections for EA.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-01-01
    Description: The Ethiopian portion of the Blue Nile River basin is subject to significant interannual variability in precipitation. As this variability has implications for local food security and transboundary water resources, numerous studies have been directed at improved understanding and, potentially, predictability of the Blue Nile rainy season (June–September) precipitation. Taken collectively, these studies present a wide range of large-scale drivers associated with precipitation variability in the Blue Nile: El Niño–Southern Oscillation (ENSO), the Indian summer monsoon, sea level pressure (SLP) anomalies over the Arabian Peninsula and Gulf of Guinea, the quasi-biennial oscillation (QBO), and dynamics of the tropical easterly jet (TEJ) and African easterly jet (AEJ) have all been emphasized to varying degrees. This study aims to reconcile these diverse analyses by evaluating teleconnection patterns and potential mechanisms of association on the subseasonal scale. It is found that associations with the TEJ, Pacific modes of variability, and the Indian monsoon are strongest in the late rainy season. Mid–rainy season precipitation (July and August) shows mixed associations with Pacific/Indian Ocean variability and Atlantic Ocean indices, along with connections to regional pressure patterns and the AEJ. June precipitation is negatively correlated with SLP over the equatorial Atlantic and upper-tropospheric geopotential height. June and July precipitation show little significant correlation with the sea surface temperature over the equatorial Pacific Ocean. The observed intraseasonal evolution of teleconnections across the rainy season indicates that subseasonal analysis is required to advance understanding and prediction of Blue Nile precipitation variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-15
    Description: This paper characterizes the influence of the Madden–Julian oscillation (MJO) on spring rainy season (March–June) convection variability over equatorial West Africa (EWA) and investigates mechanisms of association. It is found that the MJO has a significant impact on convection and precipitation anomalies over the region. Over large portions of EWA, MJO impacts on rainfall constitute a difference on the order of 20%–50% from average daily rain rates for the season. This impact is primarily due to the direct influence of the eastward movement of the MJO convective core into EWA, which is associated with westerly low-level wind anomalies that advect moisture from the Atlantic Ocean to the region. In addition, equatorial Rossby and Kelvin waves triggered by MJO convection anomalies over the Indian Ocean have a significant and systematic influence on EWA spring rainy season precipitation. The Kelvin wave contribution and the relative strength of the direct MJO convective influence compared to that of equatorial wave activity differs from findings of studies that have examined MJO influence on EWA during boreal summer. In addition, MJO is found to influence precipitation extremes during spring rains in a manner that is not observed in summer. Importantly, in this analysis the influences of MJO convection and each of the MJO-associated convectively coupled equatorial waves frequently coincide, reaching EWA approximately 20 days after MJO convection initiates in the Indian Ocean. This coincident timing enhances the total MJO impact on the region, and it also implies that MJO events have potential for prediction of regional-scale convection and rainfall anomalies over EWA in this season.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...