ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-01-28
    Description: Thermally incised meltwater channels that flow each summer across melt-prone surfaces of the Greenland ice sheet have received little direct study. We use high-resolution WorldView-1/2 satellite mapping and in situ measurements to characterize supraglacial water storage, drainage pattern, and discharge across 6,812 km2 of southwest Greenland in July 2012, after...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-06
    Description: Recent melt events on the Greenland ice sheet (GrIS) accentuate the need to constrain estimates of sea level rise through improved characterization of meltwater pathways. This effort will require more precise estimates of the volume of water stored on the surface of the GrIS. We assessed the potential to obtain such information by mapping the bathymetry of supraglacial lakes and streams from WorldView2 (WV2) satellite images. Simultaneous in situ observations of depth and reflectance from two streams and a lake with measured depths up to 10.45 m were used to test a spectrally based depth retrieval algorithm. We performed optimal band ratio analysis (OBRA) of continuous field spectra and spectra convolved to the bands of the WV2, Landsat 7 (ETM+), MODIS, and ASTER sensors. The field spectra yielded a strong relationship with depth (R2 = 0.94), and OBRA R2 values were nearly as high (0.87–0.92) for convolved spectra, suggesting that these sensors' broader bands would be sufficient for depth retrieval. Our field measurements thus indicated that remote sensing of supraglacial bathymetry is not only feasible but potentially highly accurate. OBRA of spectra from 2 m-pixel WV2 images acquired within 3–72 h of our field observations produced an optimal R2 value of 0.92 and unbiased, precise depth estimates, with mean and root mean square errors 〈 1% and 10–25% of the mean depth. Bathymetric maps produced by applying OBRA relations revealed subtle features of lake and channel morphology. In addition to providing refined storage volume estimates for lakes of various sizes, this approach can help provide estimates of the transient flux of meltwater through streams.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-07-20
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-10-30
    Description: The Galileo Europa data set served to revolutionize our view of Europa. In particular the strong evidence of a large, cold, salty Ocean beneath 5-30 km of ice has profoundly altered the significance of Europa in our thinking, especially of context of habitability in the solar system. While much remains to be learned from spacecraft observations of several sorts, there are significant questions answerable only by in-situ techniques; these relate to the formation of Europa, the nature of its ocean, and the prospects for life in its ocean, sediments, and ice. We feel that wide-ranging discussion of an in-situ subsurface mission to Europa, as part of JIMO, should proceed. The science objective of the mission is to characterize the icy shell of Europa to resolve its provenance, estimate the composition of brine of the Europa ocean, and search for evidence of Earth-like life. Probably anyone would agree that an in-situ mission to Europa would be of great value, but he or she would also immediately take the position that such a mission is utterly impractical. We take the position here of defining the least complex mission that can nonetheless justify its cost and to argue that such a mission is realistic enough that it should be seriously considered. Our mission thinking has been: 1) Soft landing. A soft lander is required on a site sufficiently flat to offer a stable platform; no further site selectivity is required. 2) Subsurface exploration. The Europa subsurface must be examined. Surficial processes on Europa arguably have exposed the upper 200 m of shell to chemical effects from the Jovian radiation belts as well as cometary infall, etc; to examine native ice we must descend below that point to, for discussion, 300 m. At that depth we argue that the ice is characteristic of ice at depth and possibly is effectively sea ice. 3) Science data. A few simple measurements at various depths and at 300 m constitute a scientifically successful mission. Measurements would include analysis of meltwater for a few inorganic ions and amino acids and an optical examination of the borehole wall. 4) Communication. Transmission of data to an orbiter is essential, but we will constrain the landed mission to a daily communication over a few days. 5) Subsurface access. Drilling to 300 m is a significant challenge; it can be addressed by several means: Thermal Probe (Cryobot) which permits water to refreeze above the vehicle. This is our tentative choice with plutonium as the fuel to generate thermal energy for drilling and electrical power for operations. Open Hole Drill, a thermal system in which the meltwater is removed for greater thermal efficiency. Meltwater removal on Europa is both a complexity and a risk, but analysis is improved. Mechanical Drilling in which cutting or grinding generates ice chips which are removed. This is too complex at Europa temperatures. The measurement objectives for the mission will be: Obj. 1: Determine the concentration of simple inorganic salts in the Europa Ice Shell and, by extrapolation, of the ocean. These data will also validate spaceborne sensors. Obj. 2: Determine the nature and abundance of amino acids in the ice such that cometary infall material in the upper ice can be compared to material at depth. Obj. 3: Optically examine the ice to resolve inclusion structure, particulate content, and stratification. Access to 300 m depth is a significant if not audacious plan; we are aware that this has not been done on any planetary body. Our approach is the use of a plutonium heat source; to overcome Europa's surface temperature and to melt ice a significant amount of plutonium is needed, and significant shielding and other protective steps will be required. The quantity of plutonium is a key concern. The mission will require subsurface collection and processing of samples for in situ analysis, calling for a miniature, high pressure micro-sampling system designed to meet needs of instruments that require low presses for operation. The inlet system itself collects a micro-sample in the external high pressure environment, then transfers it into a protected low pressure environment for analysis.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 10; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-02
    Description: Tumbleweed is a wind-propelled long-range vehicle based on well-developed and tested technology, instrumented to perform surveys Mars analog environments for habitability and suitable for a variety of missions on Mars. Tumbleweeds are light-weight and relatively inexpensive, making it very attractive for multiple deployments or piggy-backing on a larger mission. Tumbleweeds with rigid structures are also being developed for similar applications. Modeling and testing have shown that a 6 meter diameter Tumbleweed is capable of climbing 25 hills, traveling over 1 meter diameter boulders, and ranging over a thousand kilometers. Tumbleweeds have a potential payload capability of about 10 kilograms with approximately 10-20 Watts of power. Stopping for science investigations can also be accomplished using partial deflation or other braking mechanisms. Surveys for Astrobiology and other applications of tumbleweeds are shown.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Conference on Early Mars: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life; LPI-Contrib-1211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-08
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: AGU Fall Meeting; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-08
    Type: EGS-AGU-EUG Joint Assembly; Nice; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-08
    Description: The Miniature Autonomous Submersible Explorer (MASE) is a vehicle concept developed to probe the current miniaturization limits on instrumented autonomous submersibles.
    Type: 13th International Symposium on Unmanned Untethered Submersible Technology; Durham, NH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-10
    Description: Inflatable and rigid Tumbleweeds are wind-propelled long-range vehicles based on well-developed and field tested technology. Different Tumbleweed configurations can provide the capability to operate in varying terrains and accommodate a wide range of instrument packages making them suitable for autonomous surveys for in-situ natural resources. Tumbleweeds are lightweight and relatively inexpensive, making them very attractive for multiple deployments or piggy-backing on larger missions. Modeling and testing have shown that a 6 meter diameter Tumbleweed is capable of climbing 25 degree hills, traveling over 1 meter diameter boulders, and ranging over a thousand kilometers. Tumble-weeds have a potential payload capability of about 10 kg with approximately 10-20 Watts of power. Stopping for measurements can be accomplished using partial deflation or other braking mechanisms.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Resources Roundtable VI; LPI-Contrib-1224
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...