ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 30 (1998), S. 933-940 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The kinetics of the title reactions have been studied using the discharge-flow mass spectrometic method at 296 K and 1 torr of helium. The rate constant obtained for the forward reaction Br+IBr→I+Br2 (1), using three different experimental approaches (kinetics of Br consumption in excess of IBr, IBr consumption in excess of Br, and I formation), is: k1=(2.7±0.4)×10-11 cm3 molecule-1s-1. The rate constant of the reverse reaction: I+Br2→Br+IBr (-1) has been obtained from the Br2 consumption rate (with an excess of I atoms) and the IBr formation rate: k-1=(1.65±0.2)×10-13 cm3molecule-1s-1. The equilibrium constant for the reactions (1,-1), resulting from these direct determinations of k1 and k-1 and, also, from the measurements of the equilibrium concentrations of Br, IBr, I, and Br2, is: K1=k1/k-1=161.2±19.7. These data have been used to determine the enthalpy of reaction (1), ΔH298°=-(3.6±0.1) kcal mol-1 and the heat of formation of the IBr molecule, ΔHf,298°(IBr)=(9.8±0.1) kcal mol-1. © 1998 John Wiley & sons, Inc. Int J Chem Kinet 30: 933-940, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-09-01
    Print ISSN: 1089-5639
    Electronic ISSN: 1520-5215
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-01-20
    Description: The interaction of NO2 with TiO2 solid films was studied under UV irradiation using a low pressure flow reactor (1–10 Torr) combined with a modulated molecular beam mass spectrometer for monitoring of the gaseous species involved. The NO2 to TiO2 reactive uptake coefficient was measured from the kinetics of NO2 loss on TiO2 coated Pyrex rods as a function of NO2 concentration, irradiance intensity (JNO2 = 0.002–0.012 s−1), relative humidity (RH = 0.06–69 %), temperature (T = 275–320 K) and partial pressure of oxygen (0.001–3 Torr). TiO2 surface deactivation upon exposure to NO2 was observed. The initial uptake coefficient of NO2 on illuminated TiO2 surface (with 90 ppb of NO2 and JNO2≅0.006 s−1) was found to be γ0 = (1.2±0.4) ×10−4 (calculated using BET surface area) under dry conditions at T = 300 K. The steady state uptake, γ, was several tens of times lower than the initial one, independent of relative humidity, and was found to decrease in the presence of molecular oxygen. In addition, it was shown that γ is not linearly dependent on the photon flux and seems to level off under atmospheric conditions. Finally, the following expression for γ was derived, γ = 2.3×10−3 exp(−1910/T)/(1 + P0.36) (where P is O2 pressure in Torr), and recommended for atmospheric applications (for any RH, near 90 ppb of NO2 and JNO2 = 0.006 s−1).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-07-08
    Description: The interaction of HO2 radicals with solid films of Arizona Test Dust (ATD) was studied using a low-pressure flow reactor (1–9 Torr) combined with a modulated molecular beam mass spectrometer for monitoring of the gaseous species involved. The reactive uptake coefficient of HO2 was measured from the kinetics of HO2 consumption on Pyrex rods coated with ATD as a function of HO2 concentration ((0.35–3.30) × 1012 molecule cm−3), relative humidity (RH = 0.02–94%), temperature (T = 275–320 K) and UV irradiance intensity (JNO2 = 0–0.012 s−1). The initial uptake coefficient was found to be independent of concentration of HO2, temperature and irradiation conditions, and to decrease with increasing relative humidity: γ0 = 1.2/(18.7 + RH1.1) (with 30% estimated conservative uncertainty). The uptake coefficient was calculated using geometric surface area and should be considered as an upper limit of γ0. An upper limit of 5% was found for the gaseous H2O2-forming pathway of the HO2 reaction with ATD surface. The results of the measurements indicate that HO2 loss on dust aerosol may be a non-negligible sink for HOx species in the troposphere with the effect depending on specific local conditions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-04-03
    Description: The interaction of HO2 radicals with solid films of Arizona Test Dust (ATD) was studied using a low pressure flow reactor (1–9 Torr) combined with a modulated molecular beam mass spectrometer for monitoring of the gaseous species involved. The reactive uptake coefficient of HO2 was measured from the kinetics of HO2 consumption on Pyrex rods coated with ATD as a function of HO2 concentration ((0.35–3.30) × 1012 molecule cm−3), relative humidity (RH = 0.02–94%), temperature (T = 275–320 K) and UV irradiance intensity (JNO2 = 0–0.012 s−1). The initial uptake coefficient was found to be independent of concentration of HO2, temperature and irradiation conditions, and to decrease with increasing relative humidity: γ0 = 1.2/(18.7 + RH1.1) (calculated using geometric surface area, with 30% estimated conservative uncertainty). An upper limit of 5% was found for the H2O2 forming pathway of the HO2 reaction with ATD surface. The results of the measurements indicate that HO2 loss on dust aerosol may be a non negligible sink for HOx species in the troposphere with the effect depending on specific local conditions.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-10-12
    Description: The interaction of NO2 with TiO2 solid films was studied under UV irradiation using a low pressure flow reactor (1–10 Torr) combined with a modulated molecular beam mass spectrometer for monitoring of the gaseous species involved. The NO2 to TiO2 reactive uptake coefficient was measured from the kinetics of NO2 loss on TiO2 coated Pyrex rods as a function of NO2 concentration, irradiance intensity (JNO2 = 0.002–0.012 s−1), relative humidity (RH = 0.06–69%), temperature (T = 275–320 K) and partial pressure of oxygen (0.001–3 Torr). TiO2 surface deactivation upon exposure to NO2 was observed. The initial uptake coefficient of NO2 on illuminated TiO2 surface (with 90 ppb of NO2 and JNO2 ≅ 0.006 s−1) was found to be γ0 = (1.2 ± 0.4) × 10−4 (calculated using BET surface area) under dry conditions at T = 300 K. The steady state uptake, γ, was several tens of times lower than the initial one, independent of relative humidity, and was found to decrease in the presence of molecular oxygen. In addition, it was shown that γ is not linearly dependent on the photon flux and seems to level off under atmospheric conditions. Finally, the following expression for γ was derived, γ = 2.3 × 10−3 exp(−1910/T)/(1 + P0.36) (where P is O2 pressure in Torr), and recommended for atmospheric applications (for any RH, near 90 ppb of NO2 and JNO2 = 0.006 s−1). In addition, HONO, NO and N2O were found to be released into the gas phase as a result of the heterogeneous photoreaction of NO2 with TiO2 surface. Detailed study of the yield of these products is the subject of our current work.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...