ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Part fabrication from composite materials usually costs less when larger fiber tow bundles are used. On the other hand, mechanical properties generally are lower for composites made using larger size tows. This situation gives rise to a choice between costs and properties in determining the best fiber tow bundle size to employ in preparing prepreg materials for part fabrication. To address this issue, unidirectional and eight harness satin fabric composite specimens were fabricated from 3k, 6k, and 12k carbon fiber reinforced LARC-TPI powder coated towpreg. Short beam shear strengths and longitudinal and transverse flexure properties were obtained for the unidirectional specimens. Tension properties were obtained for the eight harness satin woven towpreg specimens. Knowledge of the variation of properties with tow size may serve as a guide in material selection for part fabrication.
    Keywords: MECHANICAL ENGINEERING
    Type: In: International SAMPE Symposium and Exhibition, 37th, Anaheim, CA, Mar. 9-12, 1992, Proceedings (A93-15726 04-23); p. 1040-1051.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Automated tow placement (ATP) utilizes robotic technology to lay down adjacent polymer-matrix-impregnated carbon fiber tows on a tool surface. Consolidation and cure during ATP requires that void elimination and polymer matrix adhesion be accomplished in the short period of heating and pressure rolling that follows towpreg ribbon placement from the robot head to the tool. This study examined the key towpreg ribbon properties and dimensions which play a significant role in ATP. Analysis of the heat transfer process window indicates that adequate heating can be achieved at lay down rates as high as 1 m/sec. While heat transfer did not appear to be the limiting factor, resin flow and fiber movement into tow lap gaps could be. Accordingly, consideration was given to towpreg ribbon having uniform yet non-rectangular cross sections. Dimensional integrity of the towpreg ribbon combined with customized ribbon architecture offer great promise for processing advances in ATP of high performance composites.
    Keywords: MECHANICAL ENGINEERING
    Type: In: International SAMPE Technical Conference, 24th and International SAMPE Metals and Metals Processing Conference, 3rd, Toronto, Canada, Oct. 20-22, 1992, Proceedings. Vol. 24 (A93-53376 23-23); p. T591-T605.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The process for dry powder impregnation of carbon fiber tows being developed at LaRC overcomes many of the difficulties associated with melt, solution, and slurry prepregging. In the process, fluidized powder is deposited on spread tow bundles and fused to the fibers by radiant heating. Impregnated tows have been produced for preform, weaving, and composite materials applications. Design and operating data correlations were developed for scale up of the process to commercial operation. Bench scale single tow experiments at tow speeds up to 50 cm/sec have demonstrated that the process can be controlled to produce weavable towpreg. Samples were woven and molded into preform material of good quality.
    Keywords: COMPOSITE MATERIALS
    Type: First NASA Advanced Composites Technology Conference, Part 2; p 443-454
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.
    Keywords: COMPOSITE MATERIALS
    Type: NASA, Washington, Technology 2001: The Second National Technology Transfer Conference and Exposition, Volume 2; p 3-11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: Thermoplastic prepregs of LARC-TPI have been produced in a fluidized bed unit on spread continuous fiber tows. The powders are melted on the fibers by radiant heating to adhere the polymer to the fiber. This process produces tow prepreg uniformly without imposing severe stress on the fibers or requiring long high temperature residence times for the polymer. Unit design theory and operating correlations have been developed to provide the basis for scale up to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed and resin feed systems.
    Keywords: COMPOSITE MATERIALS
    Type: SAMPE Quarterly (ISSN 0036-0821); 21; 14-19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Dry powder polymer impregnated carbon fiber tows were produced for preform weaving and composite materials molding applications. In the process, fluidized powder is deposited on spread tow bundles and melted on the fibers by radiant heating to adhere the polymer to the fiber. Unit design theory and operating correlations were developed to provide the basis for scale up of the process to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed, resin feeder, and quality control system. Bench scale experiments, at tow speeds up to 50 cm/sec, demonstrated that process variables can be controlled to produce weavable LARC-TPI carbon fiber towpreg. The towpreg made by the dry powder process was formed into unidirectional fiber moldings and was woven and molded into preform material of good quality.
    Keywords: COMPOSITE MATERIALS
    Type: NASA-TM-102648 , NAS 1.15:102648
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: This invention improves upon a method for molding structural parts from preform material. Preform material to be used for the part is provided. A silicone rubber composition containing entrained air voids is prepared. The silicone rubber and preform material assembly is situated within a rigid mold cavity used to shape the preform material to the desired shape. The entire assembly is heated in a standard heating device so that the thermal expansion on the silicone rubber exerts the pressure necessary to force the preform material into contact with the mold container. The introduction of discrete air voids into the silicone rubber allows for accurately controlled pressure application on the preform material at the cure temperature.
    Keywords: NONMETALLIC MATERIALS
    Type: NAS 1.71:LAR-15217-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist coupling are presented. A set of extension-twist-coupled composite spars was manufactured with four plies of graphite-epoxy cloth prepreg. These spars were noncircular in cross-section design and were therefore subject to warping deformations. Three different cross-sectional geometries were developed: D-shape, square, and flattened ellipse. Three spars of each type were fabricated to assess the degree of repeatability in the manufacturing process of extension-twist-coupled structures. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models. Five global modes were identified within the frequency range from 0 to 2000 Hz for each spar. The experimental results for only one D-shape spar could be determined, however, and agreed within 13.8 percent of the analytical results. Frequencies corresponding to the five global modes for the three square spars agreed within 9.5, 11.6, and 8.5 percent of the respective analytical results and for the three elliptical spars agreed within 4.9, 7.7, and 9.6 percent of the respective analytical results.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TP-3225 , L-16950 , ARL-TR-30 , NAS 1.60:3225
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: AS-4/polyimidesulfone (PISO2) composite prepreg was utilized for the improved compression molding technology investigation. This improved technique employed molding stops which advantageously facilitate the escape of volatile by-products during the B-stage curing step, and effectively minimize the neutralization of the consolidating pressure by intimate interply fiber-fiber contact within the laminate in the subsequent molding cycle. Without the modifying the resin matrix properties, composite panels with both unidirectional and angled plies with outstanding C-scans and mechanical properties were successfully molded using moderate molding conditions, i.e., 660 F and 500 psi, using this technique. The size of the panels molded were up to 6.00 x 6.00 x 0.07 in. A consolidation theory was proposed for the understanding and advancement of the processing science. Processing parameters such as vacuum, pressure cycle design, prepreg quality, etc. were explored.
    Keywords: NONMETALLIC MATERIALS
    Type: NASA-TM-104133 , NAS 1.15:104133
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: A low pressure processor was developed for preparing a well-consolidated polyimide composite laminate. Prepreg plies were formed from unidirectional fibers and a polyamic acid resin solution. Molding stops were placed at the sides of a matched metal die mold. The prepreg plies were cut shorter than the length of the mold in the in-plane lateral direction and were stacked between the molding stops to a height which was higher than the molding stops. The plies were then compressed to the height of the stops and heated to allow the volatiles to escape and to start the imidization reaction. After removing the stops from the mold, the heat was increased and 0 - 500 psi was applied to complete the imidization reaction. The heat and pressure were further increased to form a consolidated polyimide composite laminate.
    Keywords: COMPOSITE MATERIALS
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...