ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1994-01-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-12-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Carbon monoxide (CO) and methane (CH4) were measured in the 0.15- to 6-km portion of the troposphere over subarctic and boreal landscapes of midcontinent and eastern Canada during July - August 1990. In the mid-continent region, Arctic air entering the region was characterized by relatively uniform CO concentrations (86-108 parts per billion by volume (ppbv)) and CH4 concentrations (1729-1764 ppbv). Local biomass burning and long-range transport of CO into the area from industrial/urban sources and distant fires did frequently produce enhanced and variable concentrations. Emissions of CH4 from the Hudson Bay lowlands was the primary source for enhanced and variable concentrations, especially at altitudes of 0.15-1 km. In eastern Canada, most of the observed variability in CO and CH4 was similar in origin to the phenomena described for the midcontinent region. However, unexpectedly low concentrations of CO (51 ppbv) and CH4 (1688 ppbv) were measured in the midtroposphere on several flights. Combined meteorological and chemical data indicated that the low CO-CH4 events were the result of long-range transport of tropical Pacific marine air to subarctic latitudes.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D1; p. 1659-1669
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: Methane (CH4) flux measurements from Alaska tundra bogs, an alpine fen, and a subarctic boreal marsh were obtained at field sites ranging from Prudhoe Bay on the coast of the Arctic Ocean to the Alaskan Range south of Fairbanks during August 1984. In the tundra, average CH4 emission rates varied from 4.9 mg CH4 per sq m per day (moist tundra) to 119 mg CH4 per sq m per day (waterlogged tundra). Fluxes averaged 40 mg CH4 per sq m per day from wet tussock meadows in the Brooks Range and 289 mg Ch4 per sq m per day from an alpine fen in the Alaskan Range. The boreal marsh had an average CH4 emission rate of 106 mg CH4 per sq m per day. Significant emissions were detected in tundra areas where peat temperatures were as low as 4 C, and permafrost was only 25 cm below the ground surface. Emission rates from the 17 sites sampled were found to be logarithmically related to water levels at the sites. Extrapolation of the data to an estimate of the total annual CH4 emission from all arctic and boreal wetlands suggests that these ecosystems are a major source of atmospheric CH4 and could account for up to 23 percent of global CH4 emissions from wetlands.
    Keywords: ENVIRONMENT POLLUTION
    Type: Tellus, Series B - Chemical and Physical Meteorology (ISSN 0280-6509); 38; 1-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-18
    Description: Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.
    Keywords: GEOPHYSICS
    Type: Tellus; vol. 35B
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Description: The movement of methane (CH4) from anaerobic sediments through the leaves, stems, and flowers of aquatic plants and into the atmosphere was found to provide a significant pathway for the emission of CH4 from the aquatic substrates of flooded wetlands. Methane concentrations well above the surrounding ambient air levels were found in the mesophyll of 16 varies of aquatic plants and are attributed to transpiration, diffusion, and pressure-induced flow of gaseous CH4 from the roots when they are embedded in CH4-saturated anaerobic sediments. Methane emissions from the emergent parts of aquatic plants were measured using floating chamber techniques and by enclosing the plants in polyethylene bags of known volume. Concentration changes were monitored in the trapped air using syringes and gas chromatographic techniques. Vertical profiles of dissolved CH4 in sediment pore water surrounding the aquatic plants' rhizomes were obtained using an interstitial sampling technique. Methane emissions from the aquatic plants studied varied from 14.8 mg CH4/d to levels too low to be detectable. Rooted and unrooted freshwater aquatic plants were studied as well as saltwater and brackish water plants. Included in the experiment is detailed set of measurements on CH4 emissions from the common cattail (Typha latifolia). This paper illustrates that aquatic plants play an important gas exchange role in the C cycle between wetlands and the atmosphere.
    Keywords: LIFE SCIENCES (GENERAL)
    Type: Journal of Environmental Quality (ISSN 0047-2425); 14; 40-46
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Through the use of a computerized Geographic Information Service (GIS), field data on methane emissions and water inundation levels have been combined with remotely sensed vegetation cover data. This permits a more precise extrapolation of point flux measurements to regional scale flux estimates. Since the GIS allows changes in environmental variables to be included in the model, the sensitivity of emissions on large scales to changes in these parameters may be studied. Here, methane flux measurements from the Everglades marsh complex are reported, giving the flux by vegetation class.
    Keywords: ENVIRONMENT POLLUTION
    Type: IAF PAPER 85-12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: It is thought that biological methanogenesis in natural and agricultural wetlands and enteric fermentation in animals are the dominant sources of global tropospheric methane. It is pointed out that the anaerobic soils and sediments, where methanogenesis occurs, predominate in coastal marine wetlands. Coastal marine wetlands are generally believed to be approximately equal in area to freshwater wetlands. For this reason, coastal marine wetlands may be a globally significant source of atmospheric methane. The present investigation is concerned with the results of a study of direct measurements of methane fluxes to the atmosphere from salt marsh soils and of indirect determinations of fluxes from tidal creek waters. In addition, measurements of methane distributions in coastal marine wetland sediments and water are presented. The results of the investigation suggest that marine wetlands provide only a minor contribution to atmospheric methane on a global scale.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 90; 5710-572
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Biological methanogenesis in wetlands is believed to be one of the major sources of global tropospheric methane. The present paper reports measurements of methane distribution in the soils, sediments, water and vegetation of coastal marine wetlands. Measurements, carried out in the salt marshes Bay Tree Creek in Virginia and Panacea in northwest Florida, reveal methane concentrations in soils and sediments to vary with depth below the surface and with soil temperature. The fluxes of methane from marsh soils to the atmosphere at the soil-air interface are estimated to range from -0.00067 g CH4/sq m per day (methane sink) to 0.024 g CH4/sq m per day, with an average value of 0.0066 g CH4/sq m per day. Data also demonstrate the important role of tidal waters percolating through marsh soils in removing methane from the soils and releasing it to the atmosphere. The information obtained, together with previous studies, provides a framework for the design of a program based on in situ and remote sensing measurements to study the global methane cycle.
    Keywords: ENVIRONMENT POLLUTION
    Type: Symposium on the Composition of the Nonurban Troposphere; May 25, 1982 - May 28, 1982; Williamsburg, VA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...