ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2015-05-29
    Description: Continuous monitoring of atmospheric humidity and temperature profiles is important for many applications, e.g. assessment of atmospheric stability and cloud formation. While lidar measurements can provide high vertical resolution albeit with limited coverage, microwave radiometers receive information throughout the troposphere though their vertical resolution is poor. In order to overcome these specific limitations the synergy of a Microwave Radiometer (MWR) and a Raman Lidar (RL) system is presented in this work. The retrieval algorithm that combines these two instruments is an Optimal Estimation Method (OEM) that allows for a uncertainty analysis of the retrieved profiles. The OEM combines measurements and a priori information taking the uncertainty of both into account. The measurement vector consists of a set of MWR brightness temperatures and RL water vapor profiles. The method is applied for a two month field campaign around Jülich, Germany for clear sky periods. Different experiments are performed to analyse the improvements achieved via the synergy compared to the individual retrievals. When applying the combined retrieval, on average the theoretically determined absolute humidity error can be reduced by 59.8% (37.9%) with respect to the retrieval using only-MWR (only-RL) data. The analysis in terms of degrees of freedom for signal reveals that most information is gained above the usable lidar range. The retrieved profiles are further evaluated using radiosounding and GPS water vapor measurements. Within a single case study we also explore the potential of the OEM for deriving the relative humidity profile, which is especially interesting to study cloud formation in the vicinity of cloud edges. To do so temperature information is added both from RL and MWR. For temperature, it is shown that the error is reduced by 47.1% (24.6%) with respect to the only-MWR (only-RL) profile. Due to the use of MWR brightness temperatures at multiple elevation angles, the MWR provides significant information below the lidar overlap region as shown by the degrees of freedom for signal. Therefore it might be sufficient to combine RL water vapor with multi-angle, multi-wavelength MWR for the retrieval of relative humidity, however, long-term studies are necessary in the future. In general, the benefit of the sensor combination is especially strong in regions where Raman Lidar data is not available (i.e. overlap region, poor signal to noise ratio), whereas if both instruments are available, RL dominates the retrieval.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-01
    Description: The Jülich Observatory for Cloud Evolution (JOYCE), located at Forschungszentrum Jülich in the most western part of Germany, is a recently established platform for cloud research. The main objective of JOYCE is to provide observations, which improve our understanding of the cloudy boundary layer in a midlatitude environment. Continuous and temporally highly resolved measurements that are specifically suited to characterize the diurnal cycle of water vapor, stability, and turbulence in the lower troposphere are performed with a special focus on atmosphere–surface interaction. In addition, instruments are set up to measure the micro- and macrophysical properties of clouds in detail and how they interact with different boundary layer processes and the large-scale synoptic situation. For this, JOYCE is equipped with an array of state-of-the-art active and passive remote sensing and in situ instruments, which are briefly described in this scientific overview. As an example, a 24-h time series of the evolution of a typical cumulus cloud-topped boundary layer is analyzed with respect to stability, turbulence, and cloud properties. Additionally, we present longer-term statistics, which can be used to elucidate the diurnal cycle of water vapor, drizzle formation through autoconversion, and warm versus cold rain precipitation formation. Both case studies and long-term observations are important for improving the representation of clouds in climate and numerical weather prediction models.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...