ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 162 (1992), S. 561-566 
    ISSN: 1432-136X
    Keywords: Herbivore ; Hindgut ; Fermentation ; Marsupial ; Wombat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The wombats Vombatus ursinus and Lasiorhinus latifrons have a capacious proximal colon with only a vestigial caecum. The pattern of microbial fermentation in the hindgut of both species was studied in captive animals fed a pelleted straw diet and in wild wombats feeding on their natural winter diets. Digesta pH was low in the stomach but near neutrality along the hindgut, indicating effective absorption and/or buffering of the colonic contents. Initial proportions and production rates of short chain fatty acids in vitro reflected the fermentation of plant cell walls. Proportions of isobutyrate, isovalerate and n-valerate increased towards the distal colon indicating proteolysis and subsequent fermentation of amino acids. The low ammonia content of digesta fluid suggested that ammonia released from these amino acids was absorbed and utilized by the wombats and their gut microbes. Wild wombats had higher concentrations and production rates of short chain fatty acids than captive animals, which was consistent with the higher apparent digestibility of their natural diet. The energy from short chain fatty acids in captive animals was 30–33% of digestible intake. Energy intakes were low and similar to resting metabolic rates estimated for marsupials. Actual resting metabolic rates of the wombats are probably lower than these estimates, and the proportion of energy derived from fermentation substantially higher than the 53–61% estimated in wild wombats. The energy from fermentation clearly enables wombats to utilize diets high in fibre.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 162 (1992), S. 552-560 
    ISSN: 1432-136X
    Keywords: Herbivore ; Hindgut ; Digestion ; Marsupial ; Wombat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Wombats consume grasses and sedges which are often highly fibrous. The morphology of the digestive tract and the sequence of digestion were studied in two species of wombats from contrasting habitats: Vombatus ursinus from mesic habitats and Lasiorhinus latifrons from xeric regions. Studies were performed on wild wombats consuming their natural winter diets, and on captive wombats fed a high-fibre pelleted straw diet. Vombatus had a shorter digestive tract (9.2 vs 12.5 times body length) of greater capacity (wet contents 17.9 vs 13.7% body weight) than Lasiorhinus. The most capacious region of the digestive tract was the proximal colon (62–79% of contents). The proportional length and surface area of the proximal colon were greater in Vombatus, but those of the distal colon were greater in Lasiorhinus. These digestive morphologies may reflect adaptations for greater capacity and longer retention of digesta in Vombatus, but greater absorption and lower faecal water loss in Lasiorhinus. Apparent digestion along the digestive tract was estimated by reference to lignin. The proximal colon was the principal site of fibre and dry matter digestion, whereas nitrogen was mainly digested in the small intestine. Depot fats in captive wombats were highly unsaturated and reflected those in the diet. Therefore, lipids, proteins and soluble carbohydrates in the plant cell contents were digested and absorbed in the stomach and small intestine. Conversely, dietary fibre was probably retained and digested by microbial fermentation along the proximal colon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 165 (1995), S. 193-202 
    ISSN: 1432-136X
    Keywords: Digestion ; Fibre ; Fermentation ; Particle-size ; Reptile ; Xerobates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The herbivorous tortoise Xerobates agassizii contents with large fluctuations in the quality and abundance of desert pastures. Responses to grass (Schismus barbatus), herbage (Sphaeralcea ambigua) and pelleted diets were studied in captive animals. Digestive anatomy was investigated in wild tortoises. Cornified esophageal epithelia and numerous mucus glands along the digestive tract indicated a resistance to abrasive diets. Gastric contents were acidic whereas hindgut digesta were near neutral pH. The colon was the primary site of fermentation with short-chain fatty acids mainly comprised of acetate (69–84%), propionate (10–15%) and n-butyrate (1–12%). Fibre digestion was extensive and equivalent to 22–64% of digestible energy intakes. Large particles of grass (25 mm Crmordants) were excreted as a pulse but retained longer than either fluids (Co-EDTA) or fine particles (2 mm; Yb). Patterns of marker excretion suggested irregular mixing of only the fluid and fine particulate digesta in the stomach and the colon. Mean retention times of Crmordants were 14.2–14.8 days on the grass and highfibre pellets. Intakes of grass were low and accompanied by smaller estimates of digesta fill than for the high-fibre pellets. Digestive capacity was large and estimated at 11–21% of body mass on these diets. The capacious but simple digestive anatomy of the tortoise may provide the greatest flexibility in utilizing a variety of forages in its unreliable habitat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-15
    Description: Copper (Cu), iron (Fe), and zinc (Zn) are essential trace minerals for the reproduction, growth, and immunity of mammalian herbivore populations. We examined the relationships between Cu, Fe, and Zn in soils, common plants, and hepatic stores of two wild herbivores to assess the effects of weather, sex, and population density on the transfer of trace minerals from soils to mammals during the growing season. Soils, grasses, woody browse, hispid cotton rats (Sigmodon hispidus), and white-tailed deer (Odocoileus virginianus) were sampled across 19 sites. Concentrations of Cu, Fe, and Zn in grasses and browse species were not correlated with concentrations of those minerals in soils sampled from the same areas. Leaves of woody browse were higher in Cu, lower in Fe, and similar in Zn when compared with grasses. Available concentrations of soils were positively related to liver Cu and Zn in hispid cotton rats, which was consistent with the short lives and high productivity of these small mammals that rely on grass seed heads. Interactions between soil concentrations and weather also affected liver Cu and Fe in deer, which reflected the greater complexity of trophic transfers in large, long-lived, browsing herbivores. Population density was correlated with liver concentrations of Cu, Fe, and Zn in hispid cotton rats, and concentrations of Cu and Fe in deer. Liver Cu was 〈 5 mg/kg wet weight in at least 5% of animals at two of eight sites for hispid cotton rats and 〈 3.8 mg/kg wet weight in at least 5% of animals at three of 12 sites for deer, which could indicate regional limitation of Cu for populations of mammalian herbivores. Our data indicate that supplies of trace minerals may contribute to density dependence of herbivore populations. Local population density may therefore influence the prevalence of deficiency states and disease outbreak that exacerbate population cycles in wild mammals.
    Electronic ISSN: 1932-6203
    Topics: Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-01
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of Ecological Society of America.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...