ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
    Publication Date: 2006-11-16
    Description: Malignant transformation involves the acquisition of a series of genetic and epigenetic changes that subvert the normal cellular developmental program and result in the generation of a neoplastic clone with deregulated growth properties. However, in some instances, acquisition of a single oncogenic hit may be sufficient to induce a clinical disease. Studies on identical twins that developed acute leukemias during their childhood have clearly demonstrated that all oncogenes are not equal with some exhibiting greater potency than others. MLL translocations, the most frequent cause of infant leukemias, occur in utero and can be identified on Guthrie cards. Identical twins have a concordance rate near 100% with a short latency, a near synchronous diagnosis and a very poor prognosis, suggesting that MLL leukemias are a single hit disease. In order to test the effects and potency of MLL fusion genes in human hematopoietic cells, we conducted a series of in vivo experiments using retroviruses encoding either MLL-ENL or MLL-AF9. Lineage-depleted cord blood cells were transduced with these viruses then injected into sub-lethally irradiated NOD/SCID mice. 15 out of 16 MLL-ENL mice developed an aggressive human pro-B acute lymphoblastic leukemia (ALL) characterized by the extensive accumulation of immature B cells in the bone marrow and organs in less than 18 weeks. 5 out of 12 MLL-AF9 mice developed the same B-precursor ALL while 2 others developed myelomonocytic leukemia. 5 of the 6 mice injected with MLL-transduced cells did not show evidence of viral integration by PCR. The overall penetrance of leukemia in primary mice with evidence of viral integration was greater than 95%. Transplantation of leukemic cells from primary mice to secondary recipients was able to recapitulate the disease with the same phenotype in a shorter period of time with a penetrance of 100%. Karyotypic analysis of leukemic blasts from primary and secondary mice was normal. Clonal analysis of retroviral integration showed that leukemias generated in primary mice were either monoclonal or oligoclonal (two dominating clones) while the majority of secondary mice had monoclonal disease. At the level of the immunoglobulin (IgH) rearrangements, the B-precursor leukemias were always polyclonal in primary mice, with the presence of the germline rearrangement in addition to other rearrangements. New clones appeared in secondary recipients, suggesting constant rearrangement of the IgH locus. These data also support that a more primitive cell type that had not yet rearranged its immunoglobulin genes was the target of the transforming event, ruling out the possibility that a mature B cell is the target of the transformation. To our knowledge, these results provide the first examples of in vivo models where human hematopietic stem/progenitor cells are transformed into leukemia, recapitulating the features of the human disease. Also, this represents the first reliable in vivo model of B-precursor ALL using MLL fusion genes and highlights species-specific differences in the mechanisms of neoplastic transformation of human and murine cells. The very high penetrance, short latency, normal karyotype and multiple clones that contribute to the disease collectively demonstrate that expression of MLL fusions is sufficient to induce human leukemias in vivo and support the notion that the MLL leukemias are the result of a single genetic hit.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-11-19
    Description: Abstract 3648 The studies identifying gene translocations and mutations in T-ALL cell lines and/or in patients have contributed significantly to the understanding of the genetic abnormalities involved in T-ALL. However, studies on the biology of these genes, the targeted cells, the sequence and the number of hits required to convert a primary human hematopoietic stem cell (HSC)/progenitor cell into a fully transformed leukemic cell require good experimental models of human T cell development both in vivo and in vitro. The only in vivo model of human T cell leukemogenesis came unexpectedly from the gene therapy trial on patients with X-linked severe combined immunodeficiency (SCID-X1). Three to five years after gene therapy, 4 out of 10 patients in the trial developed clonal T-ALL. In these patients, retroviral integrations were found in proximity to the LMO2 promoter in the malignant clones, leading to aberrant expression of the oncogene. However, little is known on the effect of LMO2 overexpression in human cells and how it facilitates the development of T-ALL. We have developed in vivo and in vitro models to study the role of T cell oncogenes in human cells. Using the OP9-DL1 co-culture system to differentiate human HSC into mature T cells in vitro, we culture human HSC transduced with lentiviruses expressing LMO2. LMO2 overexpressing cells are blocked at the double negative stage (CD4-CD8-) of differentiation when co-cultured on OP9-Delta-Like1 stroma and proliferate 50 to 100 times more than control cells. However, these cells are not immortalized and cultures lasted approximately 80 days. LMO2 overexpression have no effect on myeloid differentiation in vitro. In vivo, LMO2 transduced human HSC/progenitor cells engraft the bone marrow of immunodeficient mice to levels comparable to control cells, while normal myeloid and B cell populations 20–24 weeks post-transplantation. LMO2 transduced cells have an increased capacity to generate T cells in the thymus in comparison to control cells (42% engraftment vs 8%, p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-03
    Description: Insights into the complex clonal architecture of acute myeloid leukemia (AML) unravelled by deep sequencing technologies have challenged the concept of AML as a hierarchically organised disease initiated and driven by rare self-renewing leukemic stem cells (LSCs). In contrast to normal human hematopoietic stem cells (HSCs), which are highly enriched in the CD34+ CD38- population, LSCs have also been found in the CD34- and the CD38+ fractions questioning the existence of a consistent LSC surface marker profile for AML. Besides, low LSC frequencies in primary samples, rapid onset of differentiation upon ex vivo culture, and genetic inter-specimen heterogeneity hamper the dissection of the molecular machinery that drives LSC self-renewal. We performed RNA-Sequencing of primary human AML samples and assessed LSC frequencies by limiting dilution analyses for 56 of these in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. By comparing gene expression profiles between high vs low LSC frequency leukemias, we identified the G-protein coupled receptor 56 (GPR56) has significantly more expressed in high LSC frequency leukemias. We validated the RNA-seq data with protein expression by FACS and found an excellent correlation. To determine whether GPR56 positive cells overlapped with the known LSC-associated phenotype CD34+ CD38-, we stained 45 AML samples with CD34, CD38, GPR56, and antibodies against other described LSC markers. Although CD34+ GPR56+ and CD34+ CD38- compartments identified the same population in some samples, we found in the majority of samples that GPR56 further subdivided the CD34+ CD38- compartment. Accordingly, not only the proportions of total GPR56+ and CD34+ GPR56+ cells were significantly higher in LSChigh versus LSClow samples, but also the proportion of GPR56+ cells within the CD34+ CD38- compartment was significantly different between the groups indicating that GPR56 might be of additional value to what is currently considered the best described LSC phenotype. The percentage of total CD34 positive cells did not correlate with LSC frequency clearly distinguishing GPR56 from CD34 or CD38, which are only suitable LSC markers when used in combination. We analysed other potential LSC markers (TIM3, CD96, CD44, CD123, CLL1 and CD47) in our RNA-Seq dataset and by FACS analysis in combination with CD34 as we did for GPR56 and none of them correlated with LSC frequency in our sample collection. To determine whether GPR56 discriminates engrafting LSCs from non-LSCs, we sorted GPR56+ and GPR56- cells within the CD34-positive and -negative compartments from selected specimens with known engraftment potential. We found that GPR56 identified the engrafting fraction in CD34positive AML samples, with a 〉50 fold enrichment in LSC in the CD34+GRP56+ fraction vs the CD34+GPR56- fraction within the same sample, demonstrating that GPR56 is a good LSC marker. Specimens with high molecular or cytogenetic risk such as chromosome 5 or 7 anomalies and EVI1- rearrangementexpressed high levels of both, GPR56 and CD34, while samples with coexistent FLT3 -ITD, DNMT3A, and NPM1 mutations displayed a unique CD34low GPR56high profile. Moreover, we found a divergent distribution of variant allele frequencies in GPR56+ versus GPR56- fractions identifying GPR56 as a discriminator of leukemic sub-clones with high and low NSG engrafting capacity. Analysis of engrafted cells re-sorted based on GPR56 after being harvested from mouse bone marrow revealed reduced complexity of the clonal composition. Most importantly, GPR56 positive cells differentiated to GPR56 negative cells in mice, which did not happen in the human niche, in which GPR56 positive and negative fractions represented two independently evolved subclones. In summary our work identifies GPR56 as a novel LSC marker in AML and also shows that GPR56 readily identifies a functionally distinct LSC-rich subclone in the majority of human AML patients and reveals hitherto unforeseen complexity in the interaction between human LSCs and the NSG mouse environment. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-03
    Description: The myeloid-related proteins S100A8 (MRP8) and S100A9 (MRP14) are endogenous alarmins abundantly and constitutively expressed by myeloid cells (neutrophils, monocytes and immature myeloid cells). S100A8 and S100A9 proteins exist as homodimers but also associate to form the heterodimer calprotectin (S100A8/A9) and are up-regulated in several inflammatory diseases and human cancers. In patients with acute myeloid leukemia (AML), the concentration of S100A8/A9 in serum is elevated and the expression of S100A8 correlates with poor prognosis. However, the role of these proteins in hematologic malignancies is largely unknown. Here, we studied the roles of S100A8 and S100A9 in a mouse model ofAML induced by overexpression of Hoxa9 and Meis1 (H9M1). As observed in human, mice developing AML have a substantial increase in S100A8/A9 their serum (5.0µg/ml ± 1.0µg/mL vs 0.5µg/mL ± 0.1µg/mL for the control, p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-06-16
    Description: Dendritic cell immunoreceptor (DCIR) is a C-type lectin receptor expressed at high levels on dendritic cells (DCs). This surface molecule acts as an attachment factor for HIV-1 on DCs and contributes to trans- and cis-infection pathways. Moreover, DICR is induced by HIV-1 in CD4+ T cells and promotes virus replication in this cell type. Nothing is known hitherto about the DCIR-dependent signaling, which is induced following HIV-1 ligation. First, specific pharmacologic inhibitors were tested on HIV-1 binding/entry and, second, specific antisense oligonucleotides targeted, more specifically kinases and phosphatases, were used. Our results show that SHP-1, SHP-2, Syk, and Src kinases (ie, Src, Fyn, and Hck) as well as PKC-α and MAP kinases (ie, Erk1/2 and p38) are all involved in the DCIR-mediated signal transduction pathway triggered by HIV-1. By mutagenesis and through the use of intracellular phosphorylated peptides, we show as well a pivotal role for the tyrosine and threonine residues of the DCIR immunoreceptor tyrosine-based inhibitory motif (ITIM). Our data suggest for the first time an involvement of ITIM domain in HIV-1–mediated signaling events and a relationship between phosphorylation events and DCIR function with respect to HIV-1 biology.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-11-29
    Description: Cord blood (CB) transplants have fallen into disfavor in large part due to low cell dose leading to prolonged hospitalizations and high transplant related mortality (TRM). UM171, a novel and potent agonist of hematopoietic stem cell (HSC) self-renewal could solve this major limitation, allowing for CB's important qualities of lower risk of chronic GVHD and relapse to prevail. In addition, UM171 could permit transplantation of smaller, better HLA matched cords, associated with lower TRM. Hence, we initiated a clinical trial to test the safety and efficacy of UM171 expanded CB (eCB). Our goal was to design a clinically viable eCB transplant with a TRM as low or lower than other HSC sources all the while maintaining CB's low relapse rate. Patients (pts) received a myeloablative conditioning regimen. On day (D)-7 of transplant, CB was thawed and CD34+ selected. The CD34- lymphocyte containing fraction was cryopreserved and infused on D+1. The CD34+ component was placed in a closed culture system with UM171 and media was injected once a day until D0, when cells were washed and infused. This fed-batch culture system allowed for small culture volumes, saving cost and labor. Between 7/16-6/18, 21 adult pts (median age 44 years) were transplanted with an eCB. Median final culture volume and net viable CD34 fold expansion were 670 mL and 35, respectively. Median 1st day of 100 and 500 neutrophils were D+10 and D+18, respectively. Achieving 100 neutrophils was 5 days faster than seen with our pts receiving peripheral blood (PB) or marrow (BM) and appeared cell dose independent, suggesting that clinically meaningful expansion of an early repopulating myeloid progenitor is at saturation even with smaller CBs. In contrast, attaining 500 neutrophils was accelerated but dependent on cell dose. More importantly, pts appeared to derive clinical benefit beyond neutrophil engraftment (defined as 500 neutrophils). Pts' median last day of fever prior to 500 neutrophils was D+8, much earlier than engraftment and 4 days earlier than seen with our PB-BM pts. We offer 2 hypotheses as explanation: i) 100 neutrophils, which are attained early, provide significant defense against infection, ii) the graft contains a significant proportion of dendritic cell precursors (30-40%) which offer mucosal protection during severe neutropenia. Duration of hospitalization was shorter by 12 days and longer by 2 days compared to our non eCB and PB-BM transplants, respectively. In addition, because cell dose requirements were lower, 12/21 pts received a better HLA matched CB, thus 〉80% of patients were transplanted with a ≥6/8 HLA matched eCB. As a result of lower minimal cell dose criteria, we can now use ∼half the CBs in the banks instead of only 5% for a 70 kg patient. Platelet engraftment occurred at a median of 42 days. With a median follow up of 14 months, there has been no CMV disease, no PTLD, 2 adenovirus cystitis, 2 (10%) grade 3-4 acute GVHD, no moderate/severe chronic GVHD and 1 TRM (5%) despite a median comorbidity index of 2 (0-5). Full donor chimerism was achieved in all cell subsets. Immune recovery was faster than seen in our unrelated donor transplants who routinely receive ATG prophylaxis with 196, 300 and 413 CD4+/µL at 3, 6 and 12 months, respectively. Interestingly, transcriptome analysis of UM171-eCB cells shows an enhanced lymphoid progenitor-associated gene signature when compared to DMSO exposed cells. Animals transplanted with UM171-eCB cells showed a 20 to 35-fold increase in thymic cellularity at 8 weeks post-transplant. Despite some very high risk pts in our trial, only 3 relapsed. Overall, progression free, and GVHD/relapse free survival (GRFS) are excellent at 95, 77 and 67%, respectively, at 12 months. A 7 day UM171 single eCB protocol is feasible and provides clinical benefits beyond faster engraftment with fewer infectious complications, better HLA matching and very low TRM, all the while saving production and hospitalization costs. Nevertheless, longer follow up will be required to better assess relapse howbeit encouraging preliminary results. Furthermore, patients' quality of life is paramount and best evaluated by GRFS which is excellent thanks to a very low rate of significant chronic GVHD all the while maintaining a low risk of relapse. In conclusion, this 1st trial documents the potency of UM171 and positions UM171-eCB as a promising HSC source which could compete with the current standard of care. Figure. Figure. Disclosures Cohen: ExCellThera: Patents & Royalties: Royalities from sales of UM171. Roy:ExCellThera: Patents & Royalties: Royalities from sales of UM171. Lachance:ExCellThera: Patents & Royalties: Royalities from sales of UM171. Roy:Hopital Maisonneuve Rosemont: Patents & Royalties: Author on patent; Kiadis Pharma: Other: Travel support; University of Montreal: Patents & Royalties: Author on patent. Busque:BMS: Consultancy; Novartis: Consultancy; Pfizer: Consultancy; Paladin: Consultancy. Kiss:Alexion: Membership on an entity's Board of Directors or advisory committees, Research Funding; Otsuka: Membership on an entity's Board of Directors or advisory committees, Research Funding. Caudrelier:ExCellThera: Employment. Zandstra:ExCellThera: Equity Ownership. Sauvageau:ExCellThera: Employment, Equity Ownership.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-06
    Description: Key Points S100A9 induces differentiation and growth arrest of AML cells via TLR4. S100A8 regulates S100A9 activity and sustains AML immature phenotype.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-04-21
    Description: Key Points GPR56 is a novel LSC marker for the majority of AML samples. GPR56 expression levels correlate with genetic risk groups and clinical outcome in AML.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...