ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 2857-2860 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The chemical dynamics to form cyanopropyne, CH3CCCN (X 1A1), and cyanoallene, H2CCCHCN (X 1A′), via the neutral–neutral reaction of the cyano radical, CN (X 2Σ+), with methylacetylene, CH3CCH (X 1A1), is investigated under single collision conditions in a crossed molecular beam experiment at a collision energy of 24.7 kJ mol−1. The laboratory angular distribution and time-of-flight spectra of the C4H3N products are recorded at m/e=65, 64, 63, and 62. The reaction of d3-methylacetylene, CD3CCH (X 1A1), with CN radicals yields reactive scattering signal at m/e=68 and m/e=67 demonstrating that two distinct H(D) atom loss channels are open. Forward-convolution fitting of the laboratory data reveal that the reaction dynamics are indirect and governed by an initial attack of the CN radical to the π electron density of the β carbon atom of the methylacetylene molecule to form a long lived CH3CCHCN collision complex. The latter decomposes via two channels, i.e., H atom loss from the CH3 group to yield cyanoallene, and H atom loss from the acetylenic carbon atom to form cyanopropyne. The explicit identification of the CN vs H exchange channel and two distinct product isomers cyanoallene and cyanopropyne strongly suggests the title reaction as a potential route to form these isomers in dark molecular clouds, the outflow of dying carbon stars, hot molecular cores, as well as the atmosphere of hydrocarbon rich planets and satellites such as the Saturnian moon Titan. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 108 (1998), S. 6698-6708 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The dynamics of the reactions O(1D)+H2→OH+H and O(1D)+D2→OD+D have been investigated in crossed molecular beam experiments with mass spectrometric detection at the collision energies of 1.9 and 3.0 kcal/mol, and 5.3 kcal/mol, respectively. From OH(OD) product laboratory angular and velocity distribution measurements, center-of-mass product translational energy and angular distributions were derived. The angular distributions are nearly backward–forward symmetric with a favored backward peaking which increases with collision energy. About 30% of the total available energy is found to be channeled into product translational energy. The results are compared with quasiclassical trajectory calculations on a DIM (diatomic-in-molecules) potential energy surface. Related experimental and theoretical works are noted. Insertion via the 1 1A′ ground state potential energy surface is the predominant mechanism, but the role of a second competitive abstraction micromechanism which should evolve on one of (or both) the first two excited surfaces 1A″ and 2 1A′ is called into play at all the investigated energies to account for the discrepancy between theoretical predictions and experimental results. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The chemical reaction dynamics to form cyanobenzene C6H5CN(X 1A1), and perdeutero cyanobenzene C6D5CN(X 1A1) via the neutral–neutral reaction of the cyano radical CN(X 2Σ+), with benzene C6H6(X 1A1g) and perdeutero benzene C6D6(X 1A1g), were investigated in crossed molecular beam experiments at collision energies between 19.5 and 34.4 kJ mol−1. The laboratory angular distributions and time-of-flight spectra of the products were recorded at mass to charge ratios m/e=103–98 and 108–98, respectively. Forward-convolution fitting of our experimental data together with electronic structure calculations (B3LYP/6−311+G**) indicate that the reaction is without entrance barrier and governed by an initial attack of the CN radical on the carbon side to the aromatic π electron density of the benzene molecule to form a Cs symmetric C6H6CN(C6D6CN) complex. At all collision energies, the center-of-mass angular distributions are forward–backward symmetric and peak at π/2. This shape documents that the decomposing intermediate has a lifetime longer than its rotational period. The H/D atom is emitted almost perpendicular to the C6H5CN plane, giving preferentially sideways scattering. This experimental finding can be rationalized in light of the electronic structure calculations depicting a H–C–C angle of 101.2° in the exit transition state. The latter is found to be tight and located about 32.8 kJ mol−1 above the products. Our experimentally determined reaction exothermicity of 80–95 kJ mol−1 is in good agreement with the theoretically calculated one of 94.6 kJ mol−1. Neither the C6H6CN adduct nor the stable iso cyanobenzene isomer C6H5NC were found to contribute to the scattering signal. The experimental identification of cyanobenzene gives a strong background for the title reaction to be included with more confidence in reaction networks modeling the chemistry in dark, molecular clouds, outflow of dying carbon stars, hot molecular cores, as well as the atmosphere of hydrocarbon rich planets and satellites such as Saturn's moon Titan. This reaction might further present a barrierless route to the formation of heteropolycyclic aromatic hydrocarbons via cyanobenzene in these extraterrestrial environments as well as hydrocarbon rich flames. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The reaction dynamics to form the 1-cyano-1-methylallene isomer CNCH3CCCH2 in its 1A′ ground state via the radical–closed shell reaction of the cyano radical CN(X 2Σ+) with dimethylacetylene CH3CCCH3 (X 1A1′) are unraveled in a crossed molecular beam experiment at a collision energy of 20.8 kJ mol−1 together with state-of-the-art electronic structure and Rice–Ramsperger–Kassel–Marcus (RRKM) calculations. Forward convolution fitting of the laboratory angular distribution together with the time-of-flight spectra verify that the reaction is indirect and proceeds by addition of the CN radical to the π orbital to form a cis/trans CH3CNC(Double Bond)CCH3 radical intermediate. This decomposes via a rather lose exit transition state located only 6–7 kJ mol−1 above the products to CNCH3CCCH2 and atomic hydrogen. The best fit of the center-of-mass angular distribution is forward–backward symmetric and peaks at π/2 documenting that the fragmenting intermediate holds a lifetime longer than its rotational period. Further, the hydrogen atom leaves almost perpendicular to the C5H5N plane resulting in sideways scattering. This finding, together with low frequency bending and wagging modes, strongly support our electronic structure calculations showing a H–C–C angle of about 106.5° in the exit transition state. The experimentally determined reaction exothermicity of 90±20 kJ mol−1 is consistent with the theoretical value, 80.4 kJ mol−1. Unfavorable kinematics prevent us from observing the CN versus CH3 exchange channel, even though our RRKM calculations suggest that this pathway is more important. Since the title reaction is barrierless and exothermic, and the exit transition state is well below the energy of the reactants, this process might be involved in the formation of unsaturated nitriles even in the coldest interstellar environments such as dark, molecular clouds and the saturnian satellite Titan. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 8857-8860 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In the first successful reactive scattering study of nitrogen atoms, the angular and velocity distribution of the ND product from the reaction N(2D)+D2 at 5.1 and 3.8 kcal/mol collision energies has been obtained in a crossed molecular beam study with mass spectrometric detection. The center-of-mass product angular distribution is found to be nearly backward–forward symmetric, reflecting an insertion dynamics. About 30% of the total available energy goes into product translation. The experimental results were compared with those of quasiclassical trajectory calculations on an accurate potential energy surface obtained from large scale ab initio electronic structure computations. Good agreement was found between the experimental results and the theoretical predictions. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Crossed molecular beam experiments were conducted to investigate the reaction of ground state carbon atoms, C(3Pj), with 1,2-butadiene, H2CCCH(CH3) (X 1A′), at three collision energies of 20.4 kJ mol−1, 37.9 kJ mol−1, and 48.6 kJ mol−1. Ab initio calculations together with our experimental data reveal that the reaction is initiated by a barrier-less addition of the carbon atom to the π system of the 1,2-butadiene molecule. Dominated by large impact parameters, C(3Pj) attacks preferentially the C2–C3 double bond to form i1 (mechanism 1); to a minor extent, small impact parameters lead to an addition of atomic carbon to the C1–C2 bond yielding i2 (mechanism 2). Both cyclic intermediates i1 and i2 ring open to triplet methylbutatriene complexes i3′ (H2CC*CCH(CH3)) and i3″, (H2CCC*CH(CH3)); C* denotes the attacked carbon atom. i3′ is suggested to decay nonstatistically prior to a complete energy randomization via atomic hydrogen loss forming 1- and 4-methylbutatrienyl CH3CCCCH2 (X 2A″) and HCCCCH(CH3) (X 2A″), respectively. The energy randomization in i3″ is likely to be complete. This isomer decomposes via H atom loss to 3-vinylpropargyl, H2CCCC2H3(X 2A″), as well as 1- and 4-methylbutatrienyl radicals. In high-density environments such as the inner regions of circumstellar envelopes of carbon stars and combustion flames, these linear C5H5 isomers might undergo collision induced isomerization to cyclic structures like the cyclopentadienyl radical. This isomer is strongly believed to be a key intermediate involved in the production of polycyclic aromatic hydrocarbon molecules and soot formation. These characteristics make the reactions of atomic carbon with C4H6 isomers compelling candidates to form C5H5 isomers in the outflow of AGB stars and oxygen-deficient hydrocarbon flames. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: In our laboratory a novel and convenient technique has been developed to generate an intense pulsed cyano radical beam to be employed in crossed molecular beam experiments investigating the chemical dynamics of bimolecular reactions. CN radicals in their ground electronic state 2Σ+ are produced in situ via laser ablation of a graphite rod at 266 nm and 30 mJ output power and subsequent reaction of the ablated species with molecular nitrogen, which acts also as a seeding gas. A chopper wheel located after the ablation source and before the collision center selects a 9 μs segment of the beam. By changing the delay time between the pulsed valve and the choppper wheel, we can select a section of the pulsed CN(X2Σ+) beam choosing different velocities in the range of 900–1920 ms−1 with speed ratios from 4 to 8. A high-stability analog oscillator drives the motor of the chopper wheel (deviations less than 100 ppm of the period), and a high-precision reversible motor driver is interfaced to the rotating carbon rod. Both units are essential to ensure a stable cyanogen radical beam with velocity fluctuations of less than 3%. The high intensity of the pulsed supersonic CN beam of about 2–3×1011 cm−3 is three orders of magnitude higher than supersonic cyano radical beams employed in previous crossed molecular beams experiments. This data together with the tunable velocity range clearly demonstrate the unique power of our newly developed in situ production of a supersonic CN radical beam. This versatile concept is extendible to generate other intense, pulsed supersonic beams of highly unstable diatomic radicals, among them BC, BN, BO, BS, CS, SiC, SiN, SiO, and SiS, which are expected to play a crucial role in interstellar chemistry, chemistry in the solar system, and/or combustion processes. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 8611-8614 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Crossed beam reactive scattering studies of the H displacement reaction of both ground 3P and excited 1D oxygen atoms with H2S show that the reaction dynamics changes dramatically upon electronic excitation: while the reaction of O(3P) is direct, that of O(1D) proceeds via a long-lived complex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The neutral–neutral reaction of the cyano radical, CN(X 2Σ+), with ethylene, C2H4(X 1Ag), has been performed in a crossed molecular beams setup at two collision energies of 15.3 and 21.0 kJ mol−1 to investigate the chemical reaction dynamics to form vinylcyanide, C2H3CN(X 1A′) under single collision conditions. Time-of-flight spectra and the laboratory angular distributions of the C3H3N products have been recorded at mass-to-charge ratios 53−50. Forward-convolution fitting of the data combined with ab initio calculations show that the reaction has no entrance barrier, is indirect (complex forming reaction dynamics), and initiated by addition of CN(X 2Σ+) to the π electron density of the olefin to give a long-lived CH2CH2CN intermediate. This collision complex fragments through a tight exit transition state located 16 kJ mol−1 above the products via H atom elimination to vinylcyanide. In a second microchannel, CH2CH2CN undergoes a 1,2 H shift to form a CH3CHCN intermediate prior to a H atom emission via a loose exit transition state located only 3 kJ mol−1 above the separated products. The experimentally observed mild "sideways scattering" at lower collision energy verifies the electronic structure calculations depicting a hydrogen atom loss in both exit transition states almost parallel to the total angular momentum vector J and nearly perpendicular to the C2H3CN molecular plane. Since the reaction has no entrance barrier, is exothermic, and all the involved transition states are located well below the energy of the separated reactants, the assignment of the vinylcyanide reaction product soundly implies that the title reaction can form vinylcyanide, C2H3CN, as observed in the atmosphere of Saturn's moon Titan and toward dark, molecular clouds holding temperatures as low as 10 K. In strong agreement with our theoretical calculations, the formation of the C2H3NC isomer was not observed. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The chemical reaction dynamics to form cyanoacetylene, HCCCN (X 1Σ+), via the radical–neutral reaction of cyano radicals, CN(X 2Σ+;ν=0), with acetylene, C2H2(X 1Σg+), are unraveled in crossed molecular beam experiments at two collision energies of 21.1 and 27.0 kJ mol−1. Laboratory angular distributions and time-of-flight spectra of the HCCCN product are recorded at m/e=51 and 50. Experiments were supplemented by electronic structure calculations on the doublet C3H2N potential energy surface and RRKM investigations. Forward-convolution fitting of the crossed beam data combined with our theoretical investigations shows that the reaction has no entrance barrier and is initiated by an attack of the CN radical to the π electron density of the acetylene molecule to form a doublet cis/trans HCCHCN collision complex on the 2A′ surface via indirect reactive scattering dynamics. Here 85% of the collision complexes undergo C–H bond rupture through a tight transition state located 22 kJ mol−1 above the cyanoacetylene, HCCCN (X 1Σ+) and H(2S1/2) products (microchannel 1). To a minor amount (15%) trans HCCHCN shows a 1,2-H shift via a 177 kJ mol−1 barrier to form a doublet H2CCCN radical, which is 46 kJ mol−1 more stable than the initial reaction intermediate (microchannel 2). The H2CCCN complex decomposes via a rather loose exit transition state situated only 7 kJ mol−1 above the reaction products HCCCN (X 1Σ+) and H(2S1/2). In both cases the geometry of the exit transition states is reflected in the observed center-of-mass angular distributions showing a mild forward/sideways peaking. The explicit identification of the cyanoacetylene as the only reaction product represents a solid background for the title reaction to be included in reaction networks modeling the chemistry in dark, molecular clouds, outflow of dying carbon stars, hot molecular cores, as well as the atmosphere of hydrocarbon rich planets and satellites such as the Saturnian moon Titan. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...