ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-07-09
    Description: In this study, a lab-scale plant was designed to treat water in continuous flow condition using non-thermal plasma technology. The core was an electrode system with connected high-voltage (HV) pulse generator. Its potentials and limitations were investigated in different experimental series with regard to the high-voltage settings, additions of oxygen-based species, different volume flow rates, and various physical-chemical properties of the process water such as conductivity, pH value, and temperature. Indigo carmine, para-Chlorobenzoic acid, and phenol were chosen as reference substances. The best HV settings was found for the voltage amplitude Û = 30 kV, the pulse repetition rate f = 0.4–0.6 kHz, and the pulse duration tb = 500 ns with an energy yield for 50% degradation G50, which is of 41.8 g∙kWh−1 for indigo carmine, 0.32 g∙kWh−1 for para-Chlorobenzoic acid, and 1.04 g∙kWh−1 for phenol. By adding 1 × 10−3 mol∙L−1 of oxygen, a 50% increase in degradation was achieved for para-Chlorobenzoic acid. Conductivity is the key parameter for degradation efficiency with a negative exponential dependence. The most important species for degradation are hydroxyl radicals (c ≈ 1.4 × 10−8 mol∙L−1) and solvated electrons (c ≈ 1.4 × 10−8 mol∙L−1). The results show that the technology could be upgraded from the small-scale experiments described in the literature to a pilot plant level and has the potential to be used on a large scale for different applications.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-16
    Description: High reliability, independence from environmental conditions, and the compact design of gas-insulated systems will lead to a wide application in future high voltage direct current (HVDC) transmission systems. Reliable operation of these assets can be ensured by applying meaningful and robust partial discharge diagnosis during development tests, acceptance tests, or operation. Therefore, the discharge behavior must be well understood. This paper aims to contribute to this understanding by investigating the partial discharge behavior of a distorted weakly inhomogeneous electrode arrangement in sulfur hexafluoride (SF6) and synthetic air under high DC voltage stress. In order to get a better understanding, the partial discharge current is measured under the variation of the insulation gas pressure, the gas type, the electric field strength, and the voltage polarity. Derived from this, a classification of the different discharge types is performed. As a result, four different discharge types can be categorized depending on the experimental parameters: discharge impulses, discharge impulses with superimposed pulseless discharges, discharge impulses with superimposed pulseless discharges, and subsequent smaller discharges and pulseless discharges. Concluding suggestions for partial discharge measurements under DC voltage stress are given: recommendations for the necessary measurement time, the applied voltage and polarity, and useful measurement techniques.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-22
    Description: Due to the increased utilization of electric converters feeding rotating high voltage motors, their insulation is subject to transient impulse and high frequency oscillating voltages. In corresponding life time experiments with repetitive oscillating impulse voltage at winding insulation samples, higher life time coefficients were observed than known from previous investigations and operational experience. In order to understand the discharge and aging phenomena, the purpose of this work is the secure detection of partial discharges in solid and solid–air insulation types for transient impulse voltage stress by applying an adequate partial discharge (PD) measurement technique to future life time experiments. It is shown that partial discharges under impulsive voltages can be detected with conventional measuring equipment using broadband shunts, as well as inductive antennas. It becomes apparent that a precise voltage source, a precise shunt, as well as a high resolution oscilloscope are mandatory for reliable current measurement results. As a part of the analysis of the measurement data, it is shown that partial discharges can be distinguished from the displacement current caused by impulse voltages in a capacitive insulation material, as well as noise and disturbance from the measurement environment. As a first approach, a high order bandpass filter is applied in order to gain sound signals for future automated signal separation.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...