ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-09-29
    Description: Activation of Janus kinase 2 (JAK2) by chromosomal translocations or point mutations is a frequent event in haematological malignancies. JAK2 is a non-receptor tyrosine kinase that regulates several cellular processes by inducing cytoplasmic signalling cascades. Here we show that human JAK2 is present in the nucleus of haematopoietic cells and directly phosphorylates Tyr 41 (Y41) on histone H3. Heterochromatin protein 1alpha (HP1alpha), but not HP1beta, specifically binds to this region of H3 through its chromo-shadow domain. Phosphorylation of H3Y41 by JAK2 prevents this binding. Inhibition of JAK2 activity in human leukaemic cells decreases both the expression of the haematopoietic oncogene lmo2 and the phosphorylation of H3Y41 at its promoter, while simultaneously increasing the binding of HP1alpha at the same site. Tauhese results identify a previously unrecognized nuclear role for JAK2 in the phosphorylation of H3Y41 and reveal a direct mechanistic link between two genes, jak2 and lmo2, involved in normal haematopoiesis and leukaemia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785147/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785147/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, Mark A -- Bannister, Andrew J -- Gottgens, Berthold -- Foster, Samuel D -- Bartke, Till -- Green, Anthony R -- Kouzarides, Tony -- 089957/Wellcome Trust/United Kingdom -- 12765/Cancer Research UK/United Kingdom -- G0800784/Medical Research Council/United Kingdom -- MC_UP_1102/2/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Oct 8;461(7265):819-22. doi: 10.1038/nature08448. Epub 2009 Sep 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cambridge Institute for Medical Research and Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19783980" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Binding Sites ; Cell Line ; Cell Nucleus/enzymology ; Chromatin/chemistry/*metabolism ; Chromosomal Proteins, Non-Histone/*metabolism ; DNA-Binding Proteins/genetics ; Gene Expression Regulation, Neoplastic ; Hematopoiesis/genetics ; Hematopoietic Stem Cells/cytology/enzymology ; Histones/chemistry/genetics/*metabolism ; Humans ; Janus Kinase 2/antagonists & inhibitors/*metabolism ; LIM Domain Proteins ; Leukemia/enzymology/genetics/metabolism/pathology ; Metalloproteins/genetics ; Mice ; Oncogenes/genetics ; Phosphorylation ; Promoter Regions, Genetic/genetics ; Protein Binding ; Proto-Oncogene Proteins ; Signal Transduction ; Tyrosine/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-06-12
    Description: T cells develop in the thymus and are critical for adaptive immunity. Natural killer (NK) lymphocytes constitute an essential component of the innate immune system in tumor surveillance, reproduction, and defense against microbes and viruses. Here, we show that the transcription factor Bcl11b was expressed in all T cell compartments and was indispensable for T lineage development. When Bcl11b was deleted, T cells from all developmental stages acquired NK cell properties and concomitantly lost or decreased T cell-associated gene expression. These induced T-to-natural killer (ITNK) cells, which were morphologically and genetically similar to conventional NK cells, killed tumor cells in vitro, and effectively prevented tumor metastasis in vivo. Therefore, ITNKs may represent a new cell source for cell-based therapies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628452/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628452/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Peng -- Burke, Shannon -- Wang, Juexuan -- Chen, Xiongfeng -- Ortiz, Mariaestela -- Lee, Song-Choon -- Lu, Dong -- Campos, Lia -- Goulding, David -- Ng, Bee Ling -- Dougan, Gordon -- Huntly, Brian -- Gottgens, Bertie -- Jenkins, Nancy A -- Copeland, Neal G -- Colucci, Francesco -- Liu, Pentao -- 076962/Wellcome Trust/United Kingdom -- 077186/Wellcome Trust/United Kingdom -- G0501150/Medical Research Council/United Kingdom -- G0800784/Medical Research Council/United Kingdom -- G116/187/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Jul 2;329(5987):85-9. doi: 10.1126/science.1188063. Epub 2010 Jun 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20538915" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; *Cell Lineage ; Cells, Cultured ; Coculture Techniques ; Cytotoxicity, Immunologic ; Gene Deletion ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Gene Knock-In Techniques ; Genes, T-Cell Receptor beta ; Killer Cells, Natural/cytology/immunology/*physiology ; *Lymphopoiesis/genetics ; Melanoma, Experimental/immunology/therapy ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Oligonucleotide Array Sequence Analysis ; Precursor Cells, T-Lymphoid/cytology/physiology ; Receptors, Antigen, T-Cell, alpha-beta/metabolism ; Repressor Proteins/*genetics/*metabolism ; Signal Transduction ; Stromal Cells/cytology/physiology ; T-Lymphocytes/cytology/immunology/*physiology/transplantation ; Tamoxifen/analogs & derivatives/pharmacology ; Tumor Suppressor Proteins/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-30
    Description: Forward genetic screens in Drosophila melanogaster for modifiers of position-effect variegation have revealed the basis of much of our understanding of heterochromatin. We took an analogous approach to identify genes required for epigenetic repression in human cells. A nonlethal forward genetic screen in near-haploid KBM7 cells identified the HUSH (human silencing hub) complex, comprising three poorly characterized proteins, TASOR, MPP8, and periphilin; this complex is absent from Drosophila but is conserved from fish to humans. Loss of HUSH components resulted in decreased H3K9me3 both at endogenous genomic loci and at retroviruses integrated into heterochromatin. Our results suggest that the HUSH complex is recruited to genomic loci rich in H3K9me3, where subsequent recruitment of the methyltransferase SETDB1 is required for further H3K9me3 deposition to maintain transcriptional silencing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487827/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487827/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tchasovnikarova, Iva A -- Timms, Richard T -- Matheson, Nicholas J -- Wals, Kim -- Antrobus, Robin -- Gottgens, Berthold -- Dougan, Gordon -- Dawson, Mark A -- Lehner, Paul J -- 100140/Wellcome Trust/United Kingdom -- 101835/Wellcome Trust/United Kingdom -- 101835/Z/13/Z/Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Jun 26;348(6242):1481-5. doi: 10.1126/science.aaa7227. Epub 2015 May 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, UK. ; Department of Haematology, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, UK. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK. ; Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. ; Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, UK. pjl30@cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26022416" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Neoplasm/genetics/*metabolism ; *Chromosomal Position Effects ; Conserved Sequence ; Drosophila melanogaster/genetics/metabolism ; Evolution, Molecular ; *Gene Silencing ; Genes, Reporter ; Genetic Loci ; Green Fluorescent Proteins/genetics ; HeLa Cells ; Heterochromatin/metabolism ; Histones/*metabolism ; Humans ; Immunoprecipitation ; Multiprotein Complexes/genetics/*metabolism ; Nuclear Proteins/genetics/*metabolism ; Phosphoproteins/genetics/*metabolism ; Protein Methyltransferases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
  • 6
    Publication Date: 2014-12-17
    Description: Combinatorial transcription factor (TF) binding is essential for cell-type-specific gene regulation. However, much remains to be learned about the mechanisms of TF interactions, including to what extent constrained spacing and orientation of interacting TFs are critical for regulatory element activity. To examine the relative prevalence of the ‘enhanceosome’ versus the ‘TF collective’ model of combinatorial TF binding, a comprehensive analysis of TF binding site sequences in large scale datasets is necessary. We developed a motif-pair discovery pipeline to identify motif co-occurrences with preferential distance(s) between motifs in TF-bound regions. Utilizing a compendium of 289 mouse haematopoietic TF ChIP-seq datasets, we demonstrate that haematopoietic-related motif-pairs commonly occur with highly conserved constrained spacing and orientation between motifs. Furthermore, motif clustering revealed specific associations for both heterotypic and homotypic motif-pairs with particular haematopoietic cell types. We also showed that disrupting the spacing between motif-pairs significantly affects transcriptional activity in a well-known motif-pair—E-box and GATA, and in two previously unknown motif-pairs with constrained spacing—Ets and Homeobox as well as Ets and E-box. In this study, we provide evidence for widespread sequence-specific TF pair interaction with DNA that conforms to the ‘enhanceosome’ model, and furthermore identify associations between specific haematopoietic cell-types and motif-pairs.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2001-05-29
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: 〈sec〉〈st〉Synopsis〈/st〉〈p〉〈textbox textbox-type="graphic"〉〈p〉〈inline-fig〉〈/inline-fig〉〈/p〉〈/textbox〉〈/p〉 〈p〉Mechanisms that specify primitive blood cells during embryonic development are largely unknown. Here, the stem cell factor NANOG is shown to exert important roles during specification from mesoderm to the first hematopoietic cells, instructing haematopoiesis by direct repression of critical lineage specifiers.〈/p〉 〈p〉 〈l type="unord"〉〈li〉〈p〉NANOG blocks erythroid differentiation in the gastrulating embryo in a cell-autonomous manner.〈/p〉〈/li〉 〈li〉〈p〉Loss of NANOG in embryonic stem cells increases expression of hematopoietic genes and shifts differentiation towards erythroid progenitors.〈/p〉〈/li〉 〈li〉〈p〉NANOG can block generation of megakaryocyte-erythroid progenitors in the adult bone marrow.〈/p〉〈/li〉 〈li〉〈p〉〈i〉Tal1〈/i〉, a key regulator of erythroid fate, is directly repressed by NANOG during gastrulation.〈/p〉〈/li〉〈/l〉 〈/p〉〈/sec〉
    Print ISSN: 0261-4189
    Electronic ISSN: 1460-2075
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-10-04
    Description: : Unraveling transcriptional circuits controlling embryonic stem cell maintenance and fate has great potential for improving our understanding of normal development as well as disease. To facilitate this, we have developed a novel web tool called ‘TRES’ that predicts the likely upstream regulators for a given gene list. This is achieved by integrating transcription factor (TF) binding events from 187 ChIP-sequencing and ChIP-on-chip datasets in murine and human embryonic stem (ES) cells with over 1000 mammalian TF sequence motifs. Using 114 TF perturbation gene sets, as well as 115 co-expression clusters in ES cells, we validate the utility of this approach. Availability and implementation: TRES is freely available at http://www.tres.roslin.ed.ac.uk . Contact: Anagha.Joshi@roslin.ed.ac.uk or bg200@cam.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-01-16
    Description: CODEX ( http://codex.stemcells.cam.ac.uk/ ) is a user-friendly database for the direct access and interrogation of publicly available next-generation sequencing (NGS) data, specifically aimed at experimental biologists. In an era of multi-centre genomic dataset generation, CODEX provides a single database where these samples are collected, uniformly processed and vetted. The main drive of CODEX is to provide the wider scientific community with instant access to high-quality NGS data, which, irrespective of the publishing laboratory, is directly comparable. CODEX allows users to immediately visualize or download processed datasets, or compare user-generated data against the database's cumulative knowledge-base. CODEX contains four types of NGS experiments: transcription factor chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-Seq), histone modification ChIP-Seq, DNase-Seq and RNA-Seq. These are largely encompassed within two specialized repositories, HAEMCODE and ESCODE, which are focused on haematopoiesis and embryonic stem cell samples, respectively. To date, CODEX contains over 1000 samples, including 221 unique TFs and 93 unique cell types. CODEX therefore provides one of the most complete resources of publicly available NGS data for the direct interrogation of transcriptional programmes that regulate cellular identity and fate in the context of mammalian development, homeostasis and disease.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...