ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2021-03-25
    Description: One-dimensional inorganic nanotubes hold promise for technological applications due to their distinct physical/chemical properties, but so far advancements have been hampered by difficulties in producing single-wall nanotubes with a well-defined radius. In this work we investigate, based on Density Functional Theory (DFT), the formation mechanism of 135 different inorganic nanotubes formed by the intrinsic self-rolling driving force found in asymmetric 2D Janus sheets. We show that for isovalent Janus sheets, the lattice mismatch between inner and outer atomic layers is the driving force behind the nanotube formation, while in the non-isovalent case it is governed by the difference in chemical bond strength of the inner and outer layer leading to steric effects. From our pool of candidate structures we have identified more than 100 tubes with a preferred radius below 35 Å, which we hypothesize can display distinctive properties compared to their parent 2D monolayers. Simple descriptors have been identified to accelerate the discovery of small-radius tubes and a Bayesian regression approach has been implemented to assess the uncertainty in our predictions on the radius.
    Electronic ISSN: 2057-3960
    Topics: Computer Science , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...