ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 91 (1995), S. 489-494 
    ISSN: 1432-2242
    Keywords: Sweet corn ; se1 ; Sucrose ; Quality
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract RFLP marker data from an F2∶3 population derived from a cross between a sugary1 (su1) and a sugary enhancer1 (su1, sel) inbred were used to construct a genetic linkage map of maize. This map includes 93 segregating marker loci distributed throughout the maize genome, providing a saturated linkage map that is suitable for linkage analysis with quantitative trait loci (QTL). This population, which has been immortalized in the form of sibbed F2∶3 families, was derived from each of the 214 F2 plants and along with probe data are available to the scientific community. QTL analysis for kernel sucrose (the primary form of sugar) concentration at 20 days after pollination (DAP) uncovered the segregation of seven major QTL influencing sucrose concentration; a locus linked to umc36a described the greatest proportion of the variation (24.7%). Since maltose concentration has previously been reported to be associated with the se1 phenotype, an analysis of probe associations with maltose concentration at 40 DAP was also conducted. The highly significant association of umc36a with maltose and sucrose concentrations provided evidence that this probe is linked to se1. Phenotypic evaluation for the se1 genotype in each F2∶3 family enabled us to map the gene 12.1 cM distal to umc36a. In contrast to previous work where se1 was reported to be located on chromosome four, our data strongly suggest that the sugary enhancer1 locus maps on the the distal portion of the long arm of chromosome 2 in the maize genome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 91 (1995), S. 495-504 
    ISSN: 1432-2242
    Keywords: BILs ; Lycopersicon esculentum (Mill) ; RFLPs ; Soluble solids ; Tomato quality
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three chromosomal segments from the wild tomato, L. chmielewskii, introgressed into the L. esculentum genome have been previously mapped to the middle and terminal regions of chromosome 7 (7M, 7T respectively), and to the terminal region of chromosome 10 (10T). The present study was designed to investigate the physiological mechanisms controlled by the 7M and 7T segments on tomato soluble solids (SS) and pH, and their genetic regulation during fruit development. The effects of 7M and 7T were studied in 64 BC2F5 backcross inbred lines (BILs) developed from a cross between LA 1501 (an L. esculentum line containing the 7M and 7T fragments from L. chmielewskii), and VF145B-7879 (a processing cultivar). BILs were classified into four homozygous genotypes with respect to the introgressed segments based on RFLP analysis, and evaluated for fruit chemical characteristics at different harvest stages. Gene(s) in the 7M fragment reduce fruit water uptake during ripening increasing pH, sugars, and SS concentration. Gene(s) in the 7T fragment were found to be associated with higher mature green fruit starch concentration and red ripe fruit weight. Comparisons between tomatoes ripened on or off the vine suggest that the physiological mechanisms influenced by the L. chmielewskii alleles are dependent on the translocation of photosynthates and water during fruit ripening.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Soluble solids ; RFLPs ; Backcross in-breds ; Tomato quality ; Vegetable breeding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three chromosomal segments from the wild tomato L. chmielewskii have been introgressed into the L. esculentum genome. Using molecular markers they have been mapped to the middle and terminal regions of chromosome 7 (7M, 7T respectively), and to the terminal region of chromosome 10 (10T). This study was conducted to further clarify the physiological influence of the introgressed segments of chromosome 7 and 10 on tomato soluble solids (SS), and other fruit and yield parameters. The effect of the 10T segment was evaluated using five lines that differ for the presence of this segment. As previously reported this segment increased fruit pH with no significant effect on SS. Sixty-four BC2F5 backcross inbred lines (BILs) were developed from a cross using LA1501 (an L. esculentum line that contains the 7M and 7T fragments from L. chmielewskii) as the donor parent, and VF145B-7879 (a processing cultivar) as the recurrent parent. BILs were classified in four groups (+ +, inbreds without either of the L. chmielewskii segments; 7M +, lines with only the 7M segment; + 7T, inbreds with only the 7T segment, and 7M7T, inbreds with both segments) based on RFLP information, and then compared to each other for all the parameters under study. Inbreds homoyzgous for the 7M fragment displayed greater SS (26%) and higher pH (0.10) than the control group (+ +). The 7L fragment did not influence either SS or pH, but was observed to significantly increase fruit yield by 12% when compared to the recurrent parent. A gene or genes that increase yield without affecting SS or pH may have potential in the development of commerical cultivars.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...