ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.
    Keywords: Spacecraft Propulsion and Power; Energy Production and Conversion
    Type: GRC-E-DAA-TN25259 , AIAA/SAE/ASEE Joint Propulsion Conference 2015; Jul 27, 2015 - Jul 29, 2015; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.
    Keywords: Electronics and Electrical Engineering; Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN24657 , AIAA Propulsion and Energy 2015; Jul 27, 2015 - Jul 29, 2015; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) Solar Electric Propulsion Technology Demonstration Mission in conjunction with PC Krause and Associates has created a Simulink-based power architecture model for a 50 kilo-Watt (kW) solar electric propulsion system. NASA has extended this model to investigate 150 kW solar electric propulsion systems. Increasing the power system capability from 50 kW to 150 kW better aligns with the anticipated power requirements for Mars and other deep space explorations. The high-power solar electric propulsion capability has been identified as a critical part of NASAs future beyond-low-Earth-orbit for human-crewed exploration missions. This paper presents multiple 150 kW architectures, simulation results, and a discussion of their merits.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN44353 , AIAA Propulsion and Energy Forum: International Energy Conversion Engineering Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-10-02
    Description: A system integration test has been performed utilizing a prototype model NEXT ion thruster, an engineering model power processing unit, and a laboratory model command and data handling system. The objectives of the test were to: a) verify that the integrated system meets performance requirements, b) demonstrate that the integrated system is functional across the anticipated thermal, power processor, and Xe propellant ranges for the DART mission, and to c) evaluate fault detection and operation of the command and data handling system. Measurements made during this test included: thruster performance, PPU input voltages, PPU electrical and thermal telemetry, software states, and fault flags. Additionally, a far-field electrostatic probe diagnostic was used to infer relative changes in the thrust vector across the various propellant flow splits. This manuscript presents the results of these tests, which include integrated ion propulsion system demonstrations of performance, details on the execution of DART flight algorithms, and software fault handling.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN72081 , International Electric Propulsion Conference; Sep 15, 2019 - Sep 20, 2019; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) Solar Electric Propulsion Technology Demonstration Mission (SEP TDM), in conjunction with PC Krause and Associates, has created a Simulink-based power architecture model for a 50 kilo-Watt (kW) solar electric propulsion system. NASA has extended this model to investigate 150 kW solar electric propulsion systems. Increasing the power capability to 150 kW is an intermediate step to the anticipated power requirements for Mars and other deep space applications. The high-power solar electric propulsion capability has been identified as a critical part of NASAs future beyond-low-Earth-orbit for human-crewed exploration missions. This paper presents four versions of a 150 kW architecture, simulation results, and a discussion of their merits.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN43147 , AIAA Propulsion and Energy Forum; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A pathfinder prototype unit and two flight power processing units (PPUs) are being developed by the Aerojet Rocketdyne Corporation in Redmond, Washington and ZIN Technologies in Cleveland, Ohio, in support of the NEXT-C Project. This project is being led by the NASA Glenn Research Center in Cleveland, Ohio, and will also yield two flight thrusters. This hardware is being considered to be provided as Government Furnished Equipment for the New Frontiers Program, and is applicable to a variety of planetary science missions and astrophysics science missions. The design of the NEXT-C PPU evolves from the hardware fabricated under the NEXT technology development project. The power processing unit operates from two sources: a wide input 80 to 160 V high-power bus and a nominal 28 V low-power bus. The unit includes six power supplies. Four power supplies (beam, accelerator, discharge, and neutralizer keeper) are needed for steady state operation, while two cathode heater power supplies (neutralizer and discharge) are utilized during thruster startup. The unit in total delivers up to 7 kW of regulated power to a single gridded-ion thruster. Significant modifications to the initial design include: high-power adaptive-delay control, upgrade of design to EEE-INST-002 compliance, telemetry accuracy improvements, incorporation of telemetry to detect plume-mode operation, and simplification of the design in select areas to improve manufacturability and commercialization potential. The project is presently in the prototype phase and preparing for qualification level environmental testing.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN33418 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 25, 2016 - Jul 27, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...