ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Nature, London, 416 pp., Geological Society, vol. 311, no. 5758, pp. 198-201, pp. L24307, (ISBN 1-86239-117-3)
    Publication Date: 2006
    Keywords: Seismicity ; Earth model, also for more shallow analyses !
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-03
    Description: Precursors to the core phase PKP are generated by scattering of seismic energy from heterogeneities in the mantle. Here, we examine a large global dataset of PKP precursors in individual seismograms and array data, to better understand scattering locations. The precursor amplitudes from individual seismograms are analysed with respect to the inner core phase PKIKP and mantle phase PP. We find and correct for a hemispherical asymmetry in the precursor/PKIKP amplitudes, resulting from inner corestructure. Using ray tracing, we locate scatterers in our array data and use these to infer scattering locations in the individual data. The scattering strength displays regional variation, however we find no relationship with long scale CMB velocity structure. Scattering is observed in all regions of data coverage, as are paths with no precursors. This indicates scattering occurs from various small scale heterogeneities, including but not limited to ULVZs or partial melt, and slabs.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-29
    Description: The mantle transition zone is delineated by seismic discontinuities around 410 and 660 km, which are generally related to mineral phase transitions. Study of the topography of the discontinuities further constrains which phase transitions play a role and, combined with their Clapeyron slopes, what temperature variations occur. Here we use P-to-s converted seismic waves or receiver functions to study the topography of the mantle seismic discontinuities beneath Europe and the effect of subducting and ponding slabs beneath southern Europe on these features. We combine roughly 28,000 of the highest quality receiver functions into a common conversion point stack. In the topography of the discontinuity around 660 km, we find broadscale depressions of 30 km beneath central Europe and around the Mediterranean. These depressions do not correlate with any topography on the discontinuity around 410 km. Explaining these strong depressions by purely thermal effects on the dissociation of ringwoodite to bridgmanite and periclase requires unrealistically large temperature reductions. Presence of several wt % water in ringwoodite leads to a deeper phase transition, but complementary observations, such as elevated Vp/Vs ratio, attenuation and electrical conductivity, are not observed beneath central Europe. Our preferred hypothesis is the dissociation of ringwoodite into akimotoite and periclase in cold downwelling slabs at the bottom of the transition zone. The strongly negative Clapeyron slope predicted for the subsequent transition of akimotoite to bridgmanite explains the depression with a temperature reduction of 200-300 K and provides a mechanism to pond slabs in the first place.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-12
    Description: As we strive to understand the most remote region of our planet, one critical area of investigation is the uppermost inner core since its structure is related to solidification of outer core material at the inner core boundary (ICB). Previous seismic studies have used body waves to show that the top ~ 100km of the inner core is isotropic. However, radial anisotropy cannot be uniquely determined by body wave observations. Alternatively, normal mode centre frequencies are sensitive to spherically symmetric Earth structure, therefore may provide a constraint on the existence of radial anisotropy in the inner core. Here we show that normal mode centre frequency measurements are compatible with 2-5% radial anisotropy in the top ~100km of the inner core with a fast direction radially outwards and a slow direction along the ICB. Given the uncertainties in the mineral physics and processes that produce anisotropy, the observed radial anisotropy may be reconciled with predictions based on either solidification processes or from texturing due to anisotropic growth.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-04
    Description: The inner core boundary marks the phase transition between the solid inner core and the fluid outer core. As the site of inner core solidification, the boundary provides insight into the processes generating the seismic structures of the inner core. In particular, it may hold the key to understanding the previously observed hemispherical asymmetry in inner core seismic velocity, anisotropy and attenuation. Here, we use a large PKiKP-PcP amplitude ratio and travel time residual dataset to investigate velocity and density contrast properties near the inner core boundary. Although hemispherical structure at the boundary has been proposed by previous inner core studies, we find no evidence for hemispheres in the amplitude ratios or travel time residuals. In addition, we find that the amplitude ratios are much larger than can be explained by variations in density contrast at the inner core boundary or core-mantle boundary. This indicates that PKiKP is primarily observed when it is anomalously large, due to focussing along its ray path. Using data in which PKiKP is not detected above the noise level, we calculate an upper estimate for the ICB density contrast of 1.2 kg m −3 . The travel time residuals display large regional variations, which differ on long and short length scales. These regions may be explained by large scale velocity variations in the F-layer just above the inner core boundary, and/or small scale topography of varying magnitude on the ICB, which also causes the large amplitudes. Such differences could arise from localised freezing and melting of the inner core.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-04-01
    Description: Reconciling the hemispherical structure of Earth’s inner core with its super-rotation Nature Geoscience 4, 264 (2011). doi:10.1038/ngeo1083 Authors: Lauren Waszek, Jessica Irving & Arwen Deuss Earth’s solid inner core grows through solidification of material from the fluid outer core onto its surface at rates of about 1 mm per year, freezing in core properties over time and generating an age–depth relation for the inner core. A hemispherical structure of the inner core is well-documented: an isotropic eastern hemisphere with fast seismic velocities contrasts with a slower, anisotropic western hemisphere. Independently, the inner core is reported to super-rotate at rates of up to 1° per year. Considering the slow growth, steady rotation rates of this magnitude would erase ’frozen-in’ regional variation and cannot coexist with hemispherical structure. Here, we exploit the age–depth relation, using the largest available PKIKP–PKiKP seismic travel time data set, to confirm hemispherical structure in the uppermost inner core, and to constrain the locations of the hemisphere boundaries. We find consistent eastward displacement of these boundaries with depth, from which we infer extremely slow steady inner core super-rotation of 0.1°–1° per million years. Our estimate of long-term super-rotation reconciles inner core rotation with hemispherical structure, two properties previously thought incompatible. It is in excellent agreement with geodynamo simulations, while not excluding the possibility that the much larger rotation rates inferred earlier correspond to fluctuations in inner core rotation on shorter timescales.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-14
    Description: SUMMARY Normal mode observations play an important role in studying broad-scale lateral variations in the Earth. Such studies require the calculation of accurate synthetic spectra in realistic earth models, and this remains a computationally challenging problem. Here, we describe a new implementation of the direct solution method for calculating normal mode spectra in laterally heterogeneous earth models. In this iterative direct solution method , the mode-coupling equations are solved in the frequency-domain using the preconditioned biconjugate gradient algorithm, and the time-domain solution is recovered using a numerical inverse Fourier transform. A number of example calculations are presented to demonstrate the accuracy and efficiency of the method for performing large ‘full coupling’ calculations as compared to methods based on matrix diagonalization and the traditional direct solution method.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-04-15
    Description: SUMMARY Normal mode observations play an important role in studying broad-scale lateral variations in the Earth. Such studies require the calculation of accurate synthetic spectra in realistic earth models, and this remains a computationally challenging problem. Here, we describe a new implementation of the direct solution method for calculating normal mode spectra in laterally heterogeneous earth models. In this iterative direct solution method , the mode-coupling equations are solved in the frequency-domain using the preconditioned biconjugate gradient algorithm, and the time-domain solution is recovered using a numerical inverse Fourier transform. A number of example calculations are presented to demonstrate the accuracy and efficiency of the method for performing large ‘full coupling’ calculations as compared to methods based on matrix diagonalization and the traditional direct solution method.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-02-17
    Description: Recent megathrust earthquakes, such as the 23 June 2001 Peru event, the Sumatra events of 2004 and 2005 and the 27 February 2010 Chile event, have given us the opportunity to measure splitting of the longest period normal modes. We use wave spectra to make robust measurements for modes 0S2, 0S3, 0S4, 2S1 and 1S2. Singlet frequencies of these modes have been measured previously using gravimeters, but here we use seismic records to observe splitting functions for 0S2 and 2S1 for the first time. Cross-coupling with nearby modes is included to account for ellipticity and rotation of the Earth and results in significantly improved splitting function measurements for 0S3, 0S4 and 1S2 compared with previous studies. The new splitting function measurements can easily be implemented in future tomographic modelling of aspherical velocity and, particularly, density structure.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-11
    Description: SUMMARY Differential rotation of the Earth's inner core has been predicted in some geodynamo models, and seismic studies over the past 15 yr have resolved rotation rates up to 1° yr −1 . Most previous seismic body-wave studies have focussed on South Sandwich Islands events recorded at station COL in Alaska. Here, we present a globally extended study into temporal variations in the inner core over some 25 yr, using PKPbc-PKPdf traveltime residuals. To test for differential rotation of the inner core, displacement of inner-core heterogeneities over time is sought. We introduce a new method of space-flattening to remove the effect of spatial variations on the time variations; this allows for the use of both polar, semi-equatorial and equatorial geometries. First, we reanalyse polar paths from South Sandwich Islands events to stations COL and INK in North America. These stations yield a differential rotation of the inner core at a rate of 0.12–0.38° yr −1 in an eastward direction, in agreement with previous studies. However, station DAWY, which has a very similar path through the inner core as COL, yields at best a westward differential rotation of the inner core. Thus DAWY results are incompatible with the COL/INK inferred rotation. Secondly, earthquakes in the Aleutian Islands region, observed at BOSA and LBTB in southern Africa, exhibit temporal variations that are incompatible with the South Sandwich Islands-COL/INK inferred rotation rate. Thirdly, Kuril Islands events, recorded in South America at station BDF, yield inconclusive results. Finally, our final piece of evidence for the irreconcilability of differential inner-core rotation with global data comes from using earthquakes in the Vanuatu region, recorded at BCAO/BGCA in Central Africa, an equatorial geometry. These residuals resolve a westward inner-core rotation at a rate of 0.14° yr −1 , over the same time period that South Sandwich Islands events indicate an eastward rotation. As any rigid-body rotation should yield the same direction and rate independent of where the inner core is sampled, our results allow us to reject previously reported inner-core differential rotation rates of up to 0.1–0.5° yr −1 . Instead, our results suggest that structure in either the inner or the outer core is varying with time, over relatively short timescales and in ways that cannot be explained by, and do not support, a differentially rotating inner core.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...