ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2020-08-28
    Description: The molybdenum cofactor (Moco) is the prosthetic group of all molybdenum-dependent enzymes except for nitrogenase. The multistep biosynthesis pathway of Moco and its function in molybdenum-dependent enzymes are already well understood. The mechanisms of Moco transfer, storage and insertion, on the other hand, are not. In the cell, Moco is usually not found in its free form and remains bound to proteins because of its sensitivity to oxidation. The green alga Chlamydomonas reinhardtii harbors a Moco carrier protein (MCP) that binds and protects Moco but is devoid of enzymatic function. It has been speculated that this MCP acts as a means of Moco storage and transport. Here, the search for potential MCPs has been extended to the prokaryotes, and many MCPs were found in cyanobacteria. A putative MCP from Rippkaea orientalis (RoMCP) was selected for recombinant production, crystallization and structure determination. RoMCP has a Rossmann-fold topology that is characteristic of nucleotide-binding proteins and a homotetrameric quaternary structure similar to that of the MCP from C. reinhardtii. In each protomer, a positively charged crevice was identified that accommodates up to three chloride ions, hinting at a potential Moco-binding site. Computational docking experiments supported this notion and gave an impression of the RoMCP–Moco complex.
    Electronic ISSN: 2053-230X
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-28
    Description: ATG16L1 plays a major role in autophagy. It acts as a molecular scaffold which mediates protein–protein interactions essential for autophagosome formation. The ATG12~ATG5–ATG16L1 complex is one of the key complexes involved in autophagosome formation. Human ATG16L1 comprises 607 amino acids with three functional domains named ATG5BD, CCD and WD40, where the C-terminal WD40 domain represents approximately 50% of the full-length protein. Previously, structures of the C-terminal WD40 domain of human ATG16L1 as well as of human ATG12~ATG5 in complex with the ATG5BD of ATG16L1 have been reported. However, apart from the ATG5BD, no structural information for the N-terminal half, including the CCD, of human ATG16L1 is available. In this study, the authors aimed to structurally characterize the N-terminal half of ATG16L1. ATG16L111–307 in complex with ATG5 has been purified and crystallized in two crystal forms. However, both crystal structures revealed degradation of ATG16L1, resulting in crystals comprising only full-length ATG5 and the ATG5BD of ATG16L1. The structures of ATG5–ATG5BD in two novel crystal forms are presented, further supporting the previously observed dimerization of ATG5–ATG16L1. The reported degradation points towards a high instability at the linker region between the ATG5BD and the CCD in ATG16L1. Based on this observation and further biochemical analysis of ATG16L1, a stable 236-amino-acid subfragment comprising residues 72–307 of the N-terminal half of ATG16L1, covering the residual, so far structurally uncharacterized region of human ATG16L1, was identified. Here, the identification, purification, biochemical characterization and crystallization of the proteolytically stable ATG16L172–307 subfragment are reported.
    Electronic ISSN: 2053-230X
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...