ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2013-06-08
    Description: The predictive quality of an ensemble model of cirrus ice crystals to model passive and active measurements of ice cloud, from the ultraviolet (UV) to the microwave, is tested. The ensemble model predicts ice mass ∝ D 2 (m-D), where D is the maximum dimension of the ice crystal, and m is the mass. This predicted m-D relationship is applied to a moment estimation parametrization of the particle size distribution (PSD), to estimate the PSD shape, given ice water content (IWC) and in-cloud temperature. The same microphysics is applied across the electromagnetic spectrum to model UV, infrared, microwave and radar observations. The short-wave measurements consist of airborne UV backscatter lidar estimates of the volume extinction coefficient, total solar optical depth, and space-based multi-directional spherical albedo measurements, at 0.865 µm, between the scattering angles 85 o and 125 o . The airborne long-wave measurements consist of high-resolution interferometer upwelling brightness temperatures, obtained between the wavelengths of about 3.45 µm and 4.1 µm, and 8.0 µm to 12.0 µm. The low frequency measurements consist of ground-based Chilbolton 35 GHz radar reflectivity measurements and space-based upwelling 190 GHz brightness temperature measurements. The predictive quality of the ensemble model is demonstrated to be generally within the experimental uncertainty of the lidar backscatter estimates of the volume extinction coefficient and total solar optical depth. The ensemble model prediction of the high-resolution brightness temperature measurements is generally within ±2 K and ±1K, at solar and infrared wavelengths, respectively. The 35 GHz radar reflectivity and 190 GHz brightness temperatures are generally simulated to within ±2 dBZ e , and ±2 K, respectively. The directional spherical albedo observations suggest that the scattering phase function of the most randomized ensemble model gives the best fit to the measurements (generally within ±3%). This paper demonstrates that the ensemble model, assuming the same microphysics , is physically consistent across the electromagnetic spectrum.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...