ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 26 (1990), S. 12-23 
    ISSN: 1040-452X
    Keywords: Epdididymal proteins ; Spermatozoa ; Sperm antigens ; Sperm maturation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The synthesis and secretion of proteins in the different regions of the human epididymis were studied in vitro. Epididymal tissues obtained from patients undergoing castration for prostatic carcinoma or from cadavers were incubated in the presence of [35S]methionine, and the resulting radiolabeled proteins were analysed on SDS-PAGE. The corpus region was found to be the most active segment in total protein synthesis. Significant qualitative and quantitative changes were observed in the pattern of proteins secreted from the different epididymal regions. To establish those epididymal proteins that interact with maturing sperm, the secreted products were immunoreacted with antibodies raised against a Triton X-100 extract of ejaculated human sperm heads. The antibodies react mainly with the head region of ejaculated spermatozoa as judged by indirect immunofluorescence. Protein A-gold labeling of freeze-fracture images showed gold particle distribution on the sperm plasma membrane. Western blot analysis of the secreted proteins revealed four bands (66, 37, 32, and 29 kDa) in the proximal regions and six additional bands 80, 76, 48, 27, 22, and 17 (kDa) in the distal part of the epididymis. Immunoprecipitation of the secreted proteins with these antibodies revealed six radioactive bands of 170, 80, 76, 60, 48, and 37 kDa, which indicates that certain proteins of epididymal origin bind to the sperm plasma membrane.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Gamete Research 19 (1988), S. 203-214 
    ISSN: 0148-7280
    Keywords: acrosome reaction ; phospholipase A2 ; spermatozoa ; proteases ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The effect of various proteases (kallikrein, plasmin, and trypsin) on sperm phospholipase A2 activity (PA2: EC 3.1.1.4) has been studied. The addition of trypsin to spermatozoa, isolated and washed in the presence of the protease inhibitor benzamidine, increased PA2 activity optimally with trypsin concentrations of 1.0-1.5 units/assay. In kinetic studies, all of the above proteases stimulated the deacylation of phosphatidylcholine (PC); in fresh spermatozoa, trypsin showed a higher activation potential than kallikrein or plasmin. In the presence of benzamidine, the activity remained at basal levels. Endogenous protease activity due to acrosin (control) resulted in an increase in PC deacylation compared to the basal level. The maximum activation time of PA2 activity by proteases was 30 min. Natural protease inhibitors (soybean trypsin inhibitor and aprotinin) kept the PA2 activity at basal levels and a by-product of kallikrein, bradykinin, did not significantly affect the control level. Protein extracts of fresh spermatozoa exhibited the same pattern of PA2 activation upon the addition of proteases, thus indicating that the increase in PA2 activity was not merely due to the release of the enzyme from the acrosome. All of these findings suggest the presence of a precursor form of phospholipase A2 that can be activated by endogenous proteases (acrosin) as well by exogenous proteases present in seminal plasma and in follicular fluid (plasmin, kallikrein). Thus, this interrelationship of proteases and prophospholipase A2 could activate a dormant fusogenic system: the resulting effect would lead to membrane fusion by lysolipids, key components in the acrosome reaction.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...