ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2015-08-15
    Description: Background: Selective pressures at the DNA level shape genes into profiles consisting of patterns of rapidly evolving sites and sites withstanding change. These profiles remain detectable even when protein sequences become extensively diverged. A common task in molecular biology is to infer functional, structural or evolutionary relationships by querying a database using an algorithm. However, problems arise when sequence similarity is low. This study presents an algorithm that uses the evolutionary rate at codon sites, the dN/dS (ω) parameter, coupled to a substitution matrix as an alignment metric for detecting distantly related proteins. The algorithm, called BLOSUM-FIRE couples a newer and improved version of the original FIRE ( F unctional I nference using R ates of E volution) algorithm with an amino acid substitution matrix in a dynamic scoring function. The enigmatic hepatitis B virus X protein was used as a test case for BLOSUM-FIRE and its associated database EvoDB. Results: The evolutionary rate based approach was coupled with a conventional BLOSUM substitution matrix. The two approaches are combined in a dynamic scoring function, which uses the selective pressure to score aligned residues. The dynamic scoring function is based on a coupled additive approach that scores aligned sites based on the level of conservation inferred from the ω values. Evaluation of the accuracy of this new implementation, BLOSUM-FIRE, using MAFFT alignment as reference alignments has shown that it is more accurate than its predecessor FIRE. Comparison of the alignment quality with widely used algorithms (MUSCLE, T-COFFEE, and CLUSTAL Omega) revealed that the BLOSUM-FIRE algorithm performs as well as conventional algorithms. Its main strength lies in that it provides greater potential for aligning divergent sequences and addresses the problem of low specificity inherent in the original FIRE algorithm. The utility of this algorithm is demonstrated using the Hepatitis B virus X (HBx) protein, a protein of unknown function, as a test case. Conclusion: This study describes the utility of an evolutionary rate based approach coupled to the BLOSUM62 amino acid substitution matrix in inferring protein domain function. We demonstrate that such an approach is robust and performs as well as an array of conventional algorithms.
    Electronic ISSN: 1471-2105
    Topics: Biology , Computer Science
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...