ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Nature, Taipei, Elsevier, vol. 437, no. 7055, pp. 133-136, pp. L15S13, (ISBN: 0-12-018847-3)
    Publication Date: 2005
    Description: Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling 〈1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.
    Keywords: Fracture ; Fault zone ; SAF ; California ; USA ; Rock mechanics ; Seismology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: We determined the activation volumes (V*) for polycrystalline magnesite with grain sizes of 2 and 80 µm deforming by low temperature plasticity (LTP) mechanisms (kinking and dislocation glide), diffusion creep, and dislocation creep at temperatures of 500, 750, and 900 °C, respectively, and a strain rate of 1–2 × 10−5 s−1 at effective pressures of 2.9–7.5 GPa in a D-DIA and 0.76 GPa in a Griggs apparatus. In each set of experiments performed at a given temperature, the strength of magnesite increases with increasing pressure. Microstructures of fine-grained magnesite deformed at 500 °C and 750 °C are consistent with deformation by LTP mechanisms and diffusion creep, respectively. Microstructures of coarse-grained magnesite deformed at 900 °C are consistent with deformation by dislocation creep. Pressure dependencies of magnesite flow laws for LTP, diffusion creep, and dislocation creep are given by activation volumes of 34 (± 7), 2 (± 1), and 10 (± 5) × 10−6 m3/mol, respectively. Addition of these activation volumes to previously determined flow laws predicts magnesite strength to be much lower than the flow strength of olivine at all subduction zone depths of the upper mantle. Thus, subducting oceanic lithosphere that has been partially carbonated by reaction with CO2-bearing fluids may deform at lowered stresses where magnesite is present, possibly resulting in strain localization and unstable run-away shear.
    Electronic ISSN: 2076-3263
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-17
    Description: We deformed two natural magnesite aggregates (grain sizes of 1 vs. 100 µm) over a wide range of temperatures (400-1000 °C) and strain rates (10 −7 – 10 −4 /s) in order to determine the deformation mechanisms of magnesite and their respective flow laws. Experiments using fine-grained magnesite were performed in a Heard gas confining medium rock deformation apparatus at a constant effective pressure (=confining pressure – CO 2 pressure) of 300 MPa. Experiments using coarse-grained magnesite were performed in a Griggs piston-cylinder rock deformation apparatus at a constant effective pressure of 900 MPa. At low temperatures ( T  〈 600 °C, strain rate = 10 −5 /s) both magnesite aggregates deform by crystal plastic mechanisms predominated by dislocation glide. At higher temperatures the coarse-grained magnesite deforms by dislocation creep and the fine-grained magnesite deforms by diffusion creep. The strain rate and temperature dependence of the strength of magnesite deforming by low temperature plasticity, dislocation creep and diffusion creep can be described by power law flow laws with stress exponents ( n ) of 19.7, 3.0 and 1.1 and activation enthalpies of 229, 410 and 209 kJ/mol, respectively. The strength of the low temperature plasticity data can also be described using an exponential flow law with α  = 0.022 MPa −1 with an activation enthalpy of 233 kJ/mol. Extrapolation of theflow laws to natural conditions indicates that magnesite is generally stronger than calcite and dolomite assuming similar grain sizes. However, its strength is orders of magnitude lower than olivine at all conditions in the Earth's mantle and may promote deep-focus earthquakes through ductile instabilities.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-26
    Description: Small-scale shear zones within the Permian Truzzo meta-granite developed during the Alpine orogeny at amphibolite facies conditions. In these shear zones magmatic quartz deformed by dislocation creep and recrystallized dynamically by grain boundary migration with minor subgrain rotation recrystallization to a grain size of around 250-750 µm, consistent with flow at low differential stresses. Fourier-Transform-Infrared (FTIR) spectroscopy reveals very low water contents in the interior of recrystallized grains (in the form of discrete OH peaks, ~20 H/10 6 Si and very little broad band absorption, 〈 100 H/10 6 Si). The spectral characteristics are comparable to those of dry Brazil quartz. In FTIR spectra, magmatic quartz grains show a broad absorption band related with high water concentrations only in those areas where fluid inclusions are present while other areas are dry. Drainage of fluid inclusions and synkinematic growth of hydrous minerals indicates that a hydrous fluid has been available during deformation. Loss of intragranular water during grain boundary migration recrystallization did not result in a microstructure indicative of hardening. These FTIR measurements provide the first evidence that quartz with extremely low intragranular water contents can deform in nature by dislocation creep at low differential stresses. Low intragranular water contents in naturally deformed quartz may not be necessarily indicative of a high strength and the results are contrary to implications taken from deformation experiments where very high water contents are required to allow dislocation creep in quartz. It is suggested that dislocation creep of quartz in the Truzzo meta-granite is possible to occur at low differential stresses because sufficient amounts of intergranular water ensure a high recovery rate by grain boundary migration while the absence of significant amounts of intragranular water is not crucial at natural conditions.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 11 (1984), S. 101-112 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The diffusion rates of carbon and oxygen in two calcite crystals of different Mn contents have been studied between 500° and 800° C in a CO2-H2O atmosphere (P CO 2=1−5 bars, P H2O=0.02−24 bars) labeled with 13C and 18O. Isotope concentration gradients within annealed specimens were measured using a secondary ion microprobe by depth profiling parallel and perpendicular to the c axis. Despite the anisotropic structure of calcite, the diffusion of carbon and oxygen are both very nearly isotropic. Least-squares fitting of the carbon data to an Arrhenius relation gives an activation energy of 87±2 kcal/mole, with D 0 terms dependent only slightly upon direction: 1 $$D_{\text{0}} {\text{(}}\parallel c{\text{) = }}\left( {9\frac{{ + 12}}{{ - 5}}} \right){\text{x10}}^{\text{2}} cm^2 /s$$ , 2 $$D_{\text{0}} {\text{(}} \bot c{\text{) = }}\left( {5\frac{{ + 6}}{{ - 3}}} \right){\text{x10}}^{\text{2}} cm^2 /s$$ . These results are in close agreement with previous determinations. Results for oxygen diffusion, however, give D values much larger than those previously reported for dry conditions; at 650° to 800° C the D values are two orders of magnitude larger. The diffusion of oxygen, unlike carbon, is strongly dependent on water pressure, as well as Mn content, and does not fit an Arrhenius relation over the entire temperature range. On the basis of these observations and considerations of the defect chemistry of calcite, it is proposed that carbon migrates as a Frenkel pair. The diffusion of oxygen, however, appears to be more complicated and may depend upon several simultaneous mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 437 (2005), S. 133-136 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-05
    Description: Hot-pressed polycrystalline quartz samples with grain sizes of 1.7–12.0 μm and water contents of 3,500 ppm H/Si were deformed in a solid-pressure-medium (Griggs-type) deformation apparatus at temperatures of 600 to 950°C, confining pressures of 0.9 to 1.5 GPa and strain rates of 10−3.3 to 10−5.9/s. Two different flow regimes are distinguished at low and high temperatures. The stress exponent determined at low temperatures (600–750°C) increased from 2.9 to 5.2 with an activation energy of 129 ± 33 kJ/mol, consistent with previous quartz dislocation creep laws indicating operation of dislocation creep. In contrast, the stress exponent determined at high temperatures (800–950°C) is 1.7 ± 0.2 with an activation energy of 183 ± 25 kJ/mol. A fugacity exponent determined at 800°C was 1.0 ± 0.2. All samples show evidence of basal 〈a〉 slip. However, flow strengths at high temperatures also depend on grain size with a small grain size exponent of 0.51 ± 0.13. Mechanical, microstructural, and textural results suggest that deformation occurs by a combination of intracrystalline and grain boundary processes. The flow law determined from the high-temperature data can be fit by (Formula presented.) with stress, σ in MPa, grain size, d in μm, (Formula presented.) in MPa, and Tk in Kelvin. At conditions of the middle crust and tectonic strain rates, deformation depends on grain size where the strength is weaker than for pure dislocation creep even for grain sizes 〉10 μm. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-11-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1984-06-10
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-04
    Description: Previous measurements of water in deformed quartzites using conventional Fourier transform infrared spectroscopy (FTIR) instruments have shown that water contents of larger grains vary from one grain to another. However, the non-equilibrium variations in water content between neighboring grains and within quartz grains cannot be interrogated further without greater measurement resolution, nor can water contents be measured in finely recrystallized grains without including absorption bands due to fluid inclusions, films, and secondary minerals at grain boundaries.Synchrotron infrared (IR) radiation coupled to a FTIR spectrometer has allowed us to distinguish and measure OH bands due to fluid inclusions, hydrogen point defects, and secondary hydrous mineral inclusions through an aperture of 10 µm for specimens 〉 40 µm thick. Doubly polished infrared (IR) plates can be prepared with thicknesses down to 4–8 µm, but measurement of small OH bands is currently limited by strong interference fringes for samples
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...