ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two geologic settings using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return. The Sample Analysis at Mars (SAM) [1] instrument suite, which will be on MSL, consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser mass spectrometer (TLS); all will be applied to analyze gases created by pyrolysis of samples. During AMASE, a Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-MS) system represented the EGA-MS capability of SAM. Another MSL instrument, CheMin, will use x-ray diffraction (XRD) and x-ray fluorescence (XRF) to perform quantitative mineralogical characterization of samples [e.g., 2]. Field-portable versions of CheMin were used during AMASE. AMASE 2010 focused on two sites that represented biotic and abiotic analogs. The abiotic site was the basaltic Sigurdfjell vent complex, which contains Mars-analog carbonate cements including carbonate globules which are excellent analogs for the globules in the ALH84001 martian meteorite [e.g., 3, 4]. The biotic site was the Knorringfjell fossil methane seep, which featured carbonates precipitated in a methane-supported chemosynthetic community [5]. This contribution focuses on EGA-MS analyses of samples from each site, with mineralogy comparisons to CheMin team results. The results give insight into organic content and organic-mineral associations, as well as some constraints on the minerals present.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using instrumentation and techniques in development for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return (MSR). The Sample Analysis at Mars (SAM) instrument suite, which will fly on MSL, was developed at Goddard Space Flight Center (GSFC), together with several partners. SAM consists of a quadrupole mass spectrometer (QMS), a gas chromatograph CGC), and a tunable laser spectrometer (TLS), which all analyze gases created by evolved gas analysis (EGA). The two sites studied represent "biotic" and "abiotic" analogs; the "biotic" site being the Knorringfjell fossil methane seep, and the "abiotic" site being the basaltic Sigurdfjell vent complex. The data presented here represent experiments to measure the carbon isotopic composition of carbonates from these two analogs using evolved gas analysis coupled with a commercial cavity ringdown CO2 isotopic analyzer (Picarro) as a proxy for the TLS on SAM.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.CPR.4362.2011 , 42nd Lunar and Planetary Science Conference; Mar 07, 2011 - Mar 11, 2011; Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...