ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1988-01-01
    Description: Cultured mononuclear phagocytes produce soluble factors that stimulate endothelial cells to release GM-colony-stimulating activity (GM-CSA). One such factor was recently identified as interleukin 1 (IL 1). Studies were designed to determine which types of granulopoietic factors are released by IL 1-stimulated endothelial cells. Supernatants from endothelial cells cultured for 3 days in medium containing IL 1 alpha and beta were tested in both murine and human CFU-GM colony growth assays. The effect of conditioned media on differentiation of WEHI-3B myelomonocytic leukemic cells was also examined. Control media containing IL 1 alone or unstimulated endothelial cell-conditioned media contained no detectable CSA in any bioassay. Medium conditioned by IL 1-stimulated endothelial cells stimulated the clonal growth of both human and murine CFU-GM and induced macrophage differentiation of WEHI-3B cells. Treatment of these conditioned media with a highly specific neutralizing monoclonal G-CSF antibody completely inhibited their activity in the murine CFU-GM assay, but only partially inhibited GM colony growth by human marrow. Treatment of the active conditioned media with a neutralizing rabbit anti-human GM-CSF antibody partially reduced the activity of the media in the human GM-colony growth assay. G-CSF radioimmunoassay of endothelial cell culture supernatants and Northern blot analysis of endothelial cell cytoplasmic RNA for GM-CSF gene transcripts confirmed that IL 1 induced expression of both G-CSF and GM-CSF genes. Because treatment of media with both antibodies abrogated all activity in the human GM colony growth assay, we conclude that IL 1-stimulated endothelial cells release both G and GM-CSF and that these are the only granulopoietic factors detectable in clonogenic assays released by these cells in vitro.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-01-01
    Description: Cultured mononuclear phagocytes produce soluble factors that stimulate endothelial cells to release GM-colony-stimulating activity (GM-CSA). One such factor was recently identified as interleukin 1 (IL 1). Studies were designed to determine which types of granulopoietic factors are released by IL 1-stimulated endothelial cells. Supernatants from endothelial cells cultured for 3 days in medium containing IL 1 alpha and beta were tested in both murine and human CFU-GM colony growth assays. The effect of conditioned media on differentiation of WEHI-3B myelomonocytic leukemic cells was also examined. Control media containing IL 1 alone or unstimulated endothelial cell-conditioned media contained no detectable CSA in any bioassay. Medium conditioned by IL 1-stimulated endothelial cells stimulated the clonal growth of both human and murine CFU-GM and induced macrophage differentiation of WEHI-3B cells. Treatment of these conditioned media with a highly specific neutralizing monoclonal G-CSF antibody completely inhibited their activity in the murine CFU-GM assay, but only partially inhibited GM colony growth by human marrow. Treatment of the active conditioned media with a neutralizing rabbit anti-human GM-CSF antibody partially reduced the activity of the media in the human GM-colony growth assay. G-CSF radioimmunoassay of endothelial cell culture supernatants and Northern blot analysis of endothelial cell cytoplasmic RNA for GM-CSF gene transcripts confirmed that IL 1 induced expression of both G-CSF and GM-CSF genes. Because treatment of media with both antibodies abrogated all activity in the human GM colony growth assay, we conclude that IL 1-stimulated endothelial cells release both G and GM-CSF and that these are the only granulopoietic factors detectable in clonogenic assays released by these cells in vitro.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1989-08-01
    Description: In this study, we further established the role of interleukin-1 (IL-1) alpha and IL-1 beta as regulators of proliferation of acute myeloid leukemia (AML) cells. IL-1 stimulated tritiated thymidine (3H-TdR) uptake of AML cells in 13 of 28 cases. Cytogenetic analysis confirmed the leukemic clonality of the IL-1-stimulated cells. Most likely, IL-1 exerted these stimulative effects directly on AML blast cells because IL-1 effectively induced 3H-TdR uptake of CD34-positive AML blasts (separated following cell sorting). Furthermore, adherent cell-depleted AML samples of three patients were more effectively stimulated than nondepleted AML fractions. Cluster and colony formation from adherent cell depleted AML samples could also be stimulated with IL-1, ie, in seven of ten cases analyzed. Subsequent experiments indicated that IL-1 stimulation depended on the release of GM-CSF because (1) induction of DNA synthesis of AML cells by IL-1 could be abrogated with antigranulocyte-macrophage colony-stimulating factor (GM-CSF) antibody, (2) conditioned media (CM) prepared from IL-1 stimulated AML blasts (adherent cell depleted) could stimulate the proliferation of purified normal bone marrow progenitors whereas supernatants from nonstimulated AML blasts did not, and (3) GM-CSF was demonstrated in IL-1/AML-CM with a specific radioimmunoassay, while GM-CSF was not detectable in nonstimulated supernatants. In one case of AML showing significant 3H- TdR uptake in the absence of CSFs, this spontaneous DNA synthesis was found to depend on autocrine IL-1 beta release as it could be suppressed with anti-IL-1 beta antibody or anti-GM-CSF. The blockade by anti-IL-1 beta could be overcome by the addition of high concentrations of IL-1 beta as well as GM-CSF. Thus, in this particular case, endogenously produced IL-1 beta had stimulated the release of GM-CSF which resulted in GM-CSF-dependent proliferation. The results indicate that GM-CSF production by AML blasts is often regulated by IL-1 rather than being constitutive.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1989-08-01
    Description: In this study, we further established the role of interleukin-1 (IL-1) alpha and IL-1 beta as regulators of proliferation of acute myeloid leukemia (AML) cells. IL-1 stimulated tritiated thymidine (3H-TdR) uptake of AML cells in 13 of 28 cases. Cytogenetic analysis confirmed the leukemic clonality of the IL-1-stimulated cells. Most likely, IL-1 exerted these stimulative effects directly on AML blast cells because IL-1 effectively induced 3H-TdR uptake of CD34-positive AML blasts (separated following cell sorting). Furthermore, adherent cell-depleted AML samples of three patients were more effectively stimulated than nondepleted AML fractions. Cluster and colony formation from adherent cell depleted AML samples could also be stimulated with IL-1, ie, in seven of ten cases analyzed. Subsequent experiments indicated that IL-1 stimulation depended on the release of GM-CSF because (1) induction of DNA synthesis of AML cells by IL-1 could be abrogated with antigranulocyte-macrophage colony-stimulating factor (GM-CSF) antibody, (2) conditioned media (CM) prepared from IL-1 stimulated AML blasts (adherent cell depleted) could stimulate the proliferation of purified normal bone marrow progenitors whereas supernatants from nonstimulated AML blasts did not, and (3) GM-CSF was demonstrated in IL-1/AML-CM with a specific radioimmunoassay, while GM-CSF was not detectable in nonstimulated supernatants. In one case of AML showing significant 3H- TdR uptake in the absence of CSFs, this spontaneous DNA synthesis was found to depend on autocrine IL-1 beta release as it could be suppressed with anti-IL-1 beta antibody or anti-GM-CSF. The blockade by anti-IL-1 beta could be overcome by the addition of high concentrations of IL-1 beta as well as GM-CSF. Thus, in this particular case, endogenously produced IL-1 beta had stimulated the release of GM-CSF which resulted in GM-CSF-dependent proliferation. The results indicate that GM-CSF production by AML blasts is often regulated by IL-1 rather than being constitutive.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-03-24
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...