ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2014-12-17
    Description: Polycyclic aromatic hydrocarbons (PAHs) are believed to be the small-size tail of the interstellar carbonaceous dust grain population. Their vibrational emission is the most widely accepted source of the aromatic near-infrared features, and their rotational radiation is a likely explanation for the dust-correlated anomalous microwave emission (AME). Yet, no individual interstellar PAH molecule has been identified to date. It was recently recognized that quasi-symmetric planar PAHs ought to have a well identifiable comb-like rotational spectrum, and suggested to search for them in spectroscopic data with matched-filtering techniques. We report the results of the first such search, carried out with the Green Bank Telescope, and targeting the star-forming region IC 348 in the Perseus molecular cloud, a known source of AME. Our observations amounted to 16.75 h and spanned a 3-GHz-wide band extending from 23.3 to 26.3 GHz. Using frequency switching, we achieved a sensitivity of 0.4 mJy per 0.4 MHz channel (1). The non-detection of comb-like spectra allowed us to set upper bounds on the abundance of specific quasi-symmetric PAH molecules (specified uniquely by their moments of inertia) of approximately 0.1 per cent of the total PAH abundance. This bound generically applies to PAHs with approximately 15–100 carbon atoms.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-03
    Description: Massive neutrinos make up a fraction of the dark matter, but due to their large thermal velocities, cluster significantly less than cold dark matter (CDM) on small scales. An accurate theoretical modelling of their effect during the non-linear regime of structure formation is required in order to properly analyse current and upcoming high-precision large-scale structure data, and constrain the neutrino mass. Taking advantage of the fact that massive neutrinos remain linearly clustered up to late times, this paper treats the linear growth of neutrino overdensities in a non-linear CDM background. The evolution of the CDM component is obtained via N -body computations. The smooth neutrino component is evaluated from that background by solving the Boltzmann equation linearized with respect to the neutrino overdensity. CDM and neutrinos are simultaneously evolved in time, consistently accounting for their mutual gravitational influence. This method avoids the issue of shot noise inherent to particle-based neutrino simulations, and, in contrast with standard Fourier-space methods, properly accounts for the non-linear potential wells in which the neutrinos evolve. Inside the most massive late-time clusters, where the escape velocity is larger than the neutrino thermal velocity, neutrinos can clump non-linearly, causing the method to formally break down. It is shown that this does not affect the total matter power spectrum, which can be very accurately computed on all relevant scales up to the present time.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-12-23
    Description: Polycyclic aromatic hydrocarbons (PAHs) are believed to be ubiquitous in the interstellar medium. Yet, to date no specific PAH molecule has been identified. In this paper, a new observational avenue is suggested to detect individual PAHs, using their rotational line emission at radio frequencies. Previous PAH searches based on rotational spectroscopy have only targeted the bowl-shaped corannulene molecule, with the underlying assumption that other polar PAHs are triaxial and have a complex and diluted spectrum unusable for identification purposes. In this paper, the rotational spectrum of quasi-symmetric PAHs is computed analytically. It is shown that the asymmetry of planar, nitrogen-substituted symmetric PAHs is small enough that their rotational spectrum, when observed with a resolution of about a MHz, has the appearance of a ‘comb’ of evenly spaced stacks of lines. The simple pattern of these ‘comb’ spectra allows for the use of matched-filtering techniques, which can result in a significantly enhanced signal-to-noise ratio. Detection forecasts are discussed for regions harbouring ‘anomalous microwave emission’, believed to originate from the collective PAH rotational emission. A systematic search for PAH lines in various environments is advocated. If detected, PAH ‘combs’ would lead us to the conclusive and unambiguous identification of specific, free-floating interstellar PAHs.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2019-11-09
    Description: Following the pioneering observations with COBE in the early 1990s, studies of the cosmic mi- crowave background (CMB) have primarily focused on temperature and polarization anisotropies. CMB spectral distortions tiny departures of the CMB energy spectrum from that of a perfect blackbody provide a second, independent probe of fundamental physics, with a reach deep into the primordial Universe. The theoretical foundation of spectral distortions has seen major advances in recent years, highlighting the immense potential of this emerging field. Spectral distortions probe a fundamental property of the Universe its thermal history thereby providing additional insight into processes within the cosmological standard model(I) (CSM) as well as new physics beyond. Spectral distortions are an important tool for understanding inflation and the nature of dark matter. They shed new light on the physics of recombination and reionization, both prominent stages in the evolution of our Universe, and furnish critical information on baryonic feedback processes, in addition to probing primordial correlation functions at scales inaccessible to other tracers. In principle the range of signals is vast: many orders of magnitude of discovery space can be explored by detailed observations of the CMB energy spectrum. Several CSM signals are predicted and provide clear experimental targets that are observable with present-day technology. Confirmation of these signals would extend the reach of the CSM by orders of magnitude in physical scale as the Universe evolves from the initial stages to its present form. Their absence would pose a huge theoretical challenge, immediately pointing to new physics. Here, we advocate for a dedicated effort to measure CMB spectral distortions at the largest angular scales (greater than approximately 1) within the ESA Voyage 2050 Program. We argue that an L-class mission with a pathfinder would allow a precise measurement of all the expected CSM distortions. With an M-class mission, the primordial distortions (created at z 〉~ 10(exp 3)) would still be detected at modest significance, while the late-time distortions will continue to be measured to high accuracy. Building on the heritage of COBE/FIRAS, a spectrometer that consists of multiple, cooled (approximately equal to 0.1 K), absolutely-calibrated Fourier Transform Spectrometers (FTS) with wide frequency coverage ( approximately equal to 10 GHz to a few x THz) and all-sky spectral sensitivity at the level of 0.1 0.5 Jy/sr would be the starting point for the M-class option. A scaled and further optimized version of this concept is being envisioned as the L-class option. Such measurements can only be done from space and would deliver hundreds of absolutely-calibrated maps of the Universe at large scales, opening numerous science opportunities for cosmology and astrophysics. This will provide independent probes of inflation, dark matter and particle physics, recombination and the energy output of our Universe from at late times, turning the long-standing spectral distortion limits of COBE/FIRAS into clear detections.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN74345
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...