ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-09-11
    Description: Water scarcity and suitable irrigation water management in arid regions represent tangible challenges for sustainable agriculture. The current study aimed to apply multivariate analysis and to develop a simplified water quality assessment using principal component analysis (PCA) and the agglomerative hierarchical clustering (AHC) technique to assess the water quality of the Bahr Mouise canal in El-Sharkia Governorate, Egypt. The proposed methods depended on the monitored water chemical composition (e.g., pH, water electrical conductivity (ECiw), Ca2+, Mg2+, Na+, K+, HCO3−, Cl−, and SO42−) during 2019. Based on the supervised classification of satellite images (Landsat 8 Operational Land Imager (OLI)), the distinguished land use/land cover types around the Bahr Mouise canal were agriculture, urban, and water bodies, while the dominating land use was agriculture. The water quality of the Bahr Mouise canal was classified into two classes based on the application of the irrigation water quality index (IWQI), while the water quality was classified into three classes using the PCA and AHC methods. Temporal variations in water quality were investigated, where the water qualities in winter, autumn, and spring (January, February, March, April, November, and December) were classified as class I (no restrictions) based on IWQI application, and the water salinity, sodicity, and/or alkalinity did not represent limiting factors for irrigation water quality. On the other hand, in the summer season (May, June, July, August, and October), the irrigation water was classified as class II (low restrictions); therefore, irrigation processes during summer may lead to an increase in the alkalinity hazard. The PCA classifications were compared with the IWQI results; the PCA classifications had similar assessment results during the year, except in September, while the water quality was assigned to class II using the PCA method and class I by applying the IWQI. Furthermore, the normalized difference vegetation index (NDVI) around the Bahr Mouise canal over eight months and climatic data assisted in explaining the fluctuations in water quality during 2019 as a result of changing the crop season and agriculture management. Assessments of water quality help to conserve soil, reduce degradation risk, and support decision makers in order to obtain sustainable agriculture, especially under water irrigation scarcity and the limited agricultural land in such an arid region.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-28
    Description: Sustainable management of groundwater in desert environments dictates better knowledge of the quality status and the controlling processes. To this end, an integrated analysis of hydrochemical and statistical assessment was carried out for 692 groundwater samples collected from the multi-layered aquifer system in Wadi ad-Dawasir area (Saudi Arabia). The four water-bearing formations arranged upwards, namely Lower Wajid, Upper Wajid, Khuff-Kumdah, and Quaternary, were investigated. The prime objective was to delineate the baseline conditions and the dominant process controlling the groundwater evolution that can help make resource management better. We used fifteen indicators, namely the total dissolved solid (TDS), total hardness, Eh, pH, temperature °C, turbidity, Fe2+, dissolved oxygen (DO), NH4, HCO3−, NO3−, F, NO2−, PO42−, and SiO2. Descriptive statistics, violation of the international standards, geostatistical modeling, and factorial analyses (FA) were performed. Geologic, soil, topographic, and climatic factors controlling the quality were investigated. The Quaternary aquifer was the most polluted by TDS, total hardness, NO3−, SiO2, Fe2+, F, and HCO3−. Khuff-Kumdah showed largest means of DO and NH4. Upper Wajid was the largest in NO2−. Lower Wajid proved largest in PO42−. Violation of the international standards clarified largest emergence of the pH for the Lower Wajid; Fe2+ and NO3− for the Upper Wajid; and total hardness, TDS, Fluoride, turbidity, and NH4 for the Quaternary aquifer. Rock interaction and evaporation are the dominant processes that contributed largely to the hydrochemical evolution of the groundwater. FA distinguished six main factors that explained for over 60.8% of the total groundwater quality variation lead byF1 (44.23%) that clarified strong positive loads of TDS (0.98), total hardness (0.95), nitrate NO3− (0.84), turbidity (0.78), NH4 (0.67), moderately loaded by fluoride (0.47), and Fe2+ (0.31).
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-09-03
    Description: The development of the agricultural sector is considered the backbone of sustainable development in Egypt. While the developing countries of the world face many challenges regarding food security due to rapid population growth and limited agricultural resources, this study aimed to assess the soils of Sidi Barrani and Salloum using multivariate analysis to determine the land capability and crop suitability for potential alternative crop uses, based on using principal component analysis (PCA), agglomerative hierarchical cluster analysis (AHC) and the Almagra model of MicroLEIS. In total, 24 soil profiles were dug, to represent the geomorphic units of the study area, and the soil physicochemical parameters were analyzed in laboratory. The land capability assessment was classified into five significant classes (C1 to C5) based on AHC and PCA analyses. The class C1 represents the highest capable class while C5 is assigned to lowest class. The results indicated that about 7% of the total area was classified as highly capable land (C1), which is area characterized by high concentrations of macronutrients (N, P, K) and low soil salinity value. However, about 52% of the total area was assigned to moderately high class (C2), and 29% was allocated in moderate class (C3), whilst the remaining area (12%) was classified as the low (C4) and not capable (C5) classes, due to soil limitations such as shallow soil depth, high salinity, and increased erosion susceptibility. Moreover, the results of the Almagra soil suitability model for ten crops were described into four suitability classes, while about 37% of the study area was allocated in the highly suitable class (S2) for wheat, olive, alfalfa, sugar beet and fig. Furthermore, 13% of the area was categorized as highly suitable soil (S2) for citrus and peach. On the other hand, about 50% of the total area was assigned to the marginal class (S4) for most of the selected crops. Hence, the use of multivariate analysis, mapping land capability and modeling the soil suitability for diverse crops help the decision makers with regard to potential agricultural development.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-27
    Description: Soil sealing is currently one of the most critical barriers to sustainable development, particularly in developing countries such as Egypt. Agriculture is a major component of the Egyptian economy and the country’s main source of food security. Urbanization is devouring vast areas of agricultural land, and therefore, in the present study, urbanization was used to determine the degree of soil sealing in a region of Kafr El Sheikh Governorate, Egypt. In this work, remote sensing data were used to monitor changes in land use and land cover (LULC) between 1984 and 2016. A field survey and population data were also used in the analysis. Support vector machine (SVM) classification was used to produce LULC maps of the study area. An accuracy assessment was performed by calculating overall accuracy and individual kappa coefficients. Additionally, soil sealing was assessed using data from 1984 to 2016, and the potential expansion of soil sealing until 2048 was simulated using the cellular automata (CA)–Markov model. Our analysis showed that in the study area (i) about 90% of the soils had soil capability degrees between class II and class III; (ii) soil sealing was not uniformly distributed in the study area; (iii) between 1984 and 2016, the area of soil sealing in fertile soils due to urbanization increased by 19,500 hectares; and (iv) between 1984 and 2000, the urban area increased by around 29%, whereas between 2000 and 2010 it increased by around 43.6%. The results suggest that the magnitude of soil sealing is a good indicator of the soil loss rate and the potential for agricultural development in the Nile Delta. The model predicted that by 2048 an area of 32,290 hectares of agricultural soil will be lost to urbanization. This study indicates that the change of LULC has a negative impact on soil sealing. Between 2000 and 2010, the area of agricultural land decreased by 4%, despite an increase in land reclamation in the north of the study area. The amount of soil sealing was found to increase towards the southeast and northeast of the study area, except for the northern parts, where the amount of soil sealing increased towards the east. Our analyses and forecasts are useful for decision-makers responsible for soil-sealing mitigation strategies and soil-sealing protection plans in the Kafr El Sheikh Governorate, Egypt.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-11-19
    Description: Today, the global food security is one of the most pressing issues for humanity, and, according to Food and Agriculture Organisation (FAO), the increasing demand for food is likely to grow by 70% until 2050. In this current condition and future scenario, the agricultural production is a critical factor for global food security and for facing the food security challenge, with specific reference to many African countries, where a large quantities of rice are imported from other continents. According to FAO, to face the Africa’s inability to reach self-sufficiency in rice, it is urgent “to redress to stem the trend of over-reliance on imports and to satisfy the increasing demand for rice in areas where the potential of local production resources is exploited at very low levels” The present study was undertaken to design a new method for land evaluation based on soil quality indicators and remote sensing data, to assess and map soil suitability for rice crop. Results from the investigations, performed in some areas in the northern part of the Nile Delta, were compared with the most common approaches, two parametric (the square root, Storie methods) and two qualitative (ALES and MicrioLEIS) methods. From the qualitative point of view, the results showed that: (i) all the models provided partly similar outputs related to the soil quality assessments, so that the distinction using the crop productivity played an important role, and (ii) outputs from the soil suitability models were consistent with both the satellite Sentinel-2 Normalize Difference Vegetation Indices (NDVI) during the crop growth and the yield production. From the quantitative point of view, the comparison of the results from the diverse approaches well fit each other, and the model, herein proposed, provided the highest performance. As a whole, a significant increasing in R2 values was provided by the model herein proposed, with R2 equal to 0.92, followed by MicroLES, Storie, ALES and Root as R2 with value equal to 0.87, 0.86, 0.84 and 0.84, respectively, with increasing percentage in R2 equal to 5%, 6% and 8%, respectively. Furthermore, the proposed model illustrated that around (i) 44.44% of the total soils of the study area are highly suitable, (ii) 44% are moderately suitable, and (iii) approximately 11.56% are unsuitable for rice due to their adverse physical and chemical soil properties. The approach herein presented can be promptly re-applied in arid region and the quantitative results obtained can be used by decision makers and regional governments.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-11-12
    Description: The mapping of soil nutrients is a key issue for numerous applications and research fields ranging from global changes to environmental degradation, from sustainable soil management to the precision agriculture concept. The characterization, modeling and mapping of soil properties at diverse spatial and temporal scales are key factors required for different environments. This paper is focused on the use and comparison of soil chemical analyses, Visible near infrared and shortwave infrared VNIR-SWIR spectroscopy, partial least-squares regression (PLSR), Ordinary Kriging (OK), and Landsat-8 operational land imager (OLI) images, to inexpensively analyze and predict the content of different soil nutrients (nitrogen (N), phosphorus (P), and potassium (K)), pH, and soil organic matter (SOM) in arid conditions. To achieve this aim, 100 surface samples of soil were gathered to a depth of 25 cm in the Wadi El-Garawla area (the northwest coast of Egypt) using chemical analyses and reflectance spectroscopy in the wavelength range from 350 to 2500 nm. PLSR was used firstly to model the relationship between the averaged values from the ASD spectroradiometer and the available N, P, and K, pH and SOM contents in soils in order to map the predicted value using Ordinary Kriging (OK) and secondly to retrieve N, P, K, pH, and SOM values from OLI images. Thirty soil samples were selected to verify the validity of the results. The randomly selected samples included the spatial diversity and characteristics of the study area. The prediction of available of N, P, K pH and SOM in soils using VNIR-SWIR spectroscopy showed high performance (where R2 was 0.89, 0.72, 0.91, 0.65, and 0.75, respectively) and quite satisfactory results from Landsat-8 OLI images (correlation R2 values 0.71, 0.68, 0.55, 0.62 and 0.7, respectively). The results showed that about 84% of the soils of Wadi El-Garawla are characterized by low-to-moderate fertility, while about 16% of the area is characterized by high soil fertility.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: Soil quality assessment is the first step towards precision farming and agricultural management. In the present study, a multivariate analysis and geographical information system (GIS) were used to assess and map a soil quality index (SQI) in El-Fayoum depression in the Western Desert of Egypt. For this purpose, a total of 36 geo-referenced representative soil samples (0–0.6 m) were collected and analyzed according to standardized protocols. Principal component analysis (PCA) was used to reduce the dataset into new variables, to avoid multi-collinearity, and to determine relative weights (Wi) and soil indicators (Si), which were used to obtain the soil quality index (SQI). The zones of soil quality were determined using principal component scores and cluster analysis of soil properties. A soil quality index map was generated using a geostatistical approach based on ordinary kriging (OK) interpolation. The results show that the soil data can be classified into three clusters: Cluster I represents about 13.89% of soil samples, Cluster II represents about 16.6% of samples, and Cluster III represents the rest of the soil data (69.44% of samples). In addition, the simulation results of cluster analysis using the Monte Carlo method show satisfactory results for all clusters. The SQI results reveal that the study area is classified into three zones: very good, good, and fair soil quality. The areas categorized as very good and good quality occupy about 14.48% and 50.77% of the total surface investigated, and fair soil quality (mainly due to salinity and low soil nutrients) constitutes about 34.75%. As a whole, the results indicate that the joint use of PCA and GIS allows for an accurate and effective assessment of the SQI.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-07
    Description: Food security has become a global concern for humanity with rapid population growth, requiring a sustainable assessment of natural resources. Soil is one of the most important sources that can help to bridge the food demand gap to achieve food security if well assessed and managed. The aim of this study was to determine the soil quality index (SQI) for El Fayoum depression in the Western Egyptian Desert using spatial modeling for soil physical, chemical, and biological properties based on the MEDALUS methodology. For this purpose, a spatial model was developed to evaluate the soil quality of the El Fayoum depression in the Western Egyptian Desert. The integration between Digital Elevation Model (DEM) and Sentinel-2 satellite image was used to produce landforms and digital soil mapping for the study area. Results showed that the study area located under six classes of soil quality, e.g., very high-quality class represents an area of 387.12 km2 (22.7%), high-quality class occupies 441.72 km2 (25.87%), the moderate-quality class represents 208.57 km2 (12.21%), slightly moderate-quality class represents 231.10 km2 (13.5%), as well as, a low-quality class covering an area of 233 km2 (13.60%), and very low-quality class occupies about 206 km2 (12%). The Agricultural Land Evaluation System for arid and semi-arid regions (ALESarid) was used to estimate land capability. Land capability classes were non-agriculture class (C6), poor (C4), fair (C3), and good (C2) with an area 231.87 km2 (13.50%), 291.94 km2 (17%), 767.39 km2 (44.94%), and 416.07 km2 (24.4%), respectively. Land capability along with the normalized difference vegetation index (NDVI) used for validation of the proposed model of soil quality. The spatially-explicit soil quality index (SQI) shows a strong significant positive correlation with the land capability and a positive correlation with NDVI at R2 0.86 (p 〈 0.001) and 0.18 (p 〈 0.05), respectively. In arid regions, the strategy outlined here can easily be re-applied in similar environments, allowing decision-makers and regional governments to use the quantitative results achieved to ensure sustainable development.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...