ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-08-24
    Description: Fosfomycin and nitrofurantoin are antibiotics of choice to orally treat non-complicated urinary tract infections (UTIs) of community origin because they remain active against bacteria resistant to other antibiotics. However, epidemiologic surveillance studies have detected a reduced susceptibility to these drugs. The objective of this study was to determine possible mechanisms of resistance to these antibiotics in clinical isolates of fosfomycin- and/or nitrofurantoin-resistant UTI-producing Escherichia coli. We amplified and sequenced murA, glpT, uhpT, uhpA, ptsI, cyaA, nfsA, nfsB, and ribE genes, and screened plasmid-borne fosfomycin-resistance genes fosA3, fosA4, fosA5, fosA6, and fosC2 and nitrofurantoin-resistance genes oqxA and oqxB by polymerase chain reaction. Among 29 isolates studied, 22 were resistant to fosfomycin due to deletion of uhpT and/or uhpA genes, and 2 also possessed the fosA3 gene. Some modifications detected in sequences of NfsA (His11Tyr, Ser33Arg, Gln67Leu, Cys80Arg, Gly126Arg, Gly154Glu, Arg203Cys), NfsB (Gln44His, Phe84Ser, Arg107Cys, Gly192Ser, Arg207His), and RibE (Pro55His), and the production of truncated NfsA (Gln67 and Gln147) and NfsB (Glu54), were associated with nitrofurantoin resistance in 15/29 isolates; however, the presence of oqxAB plasmid genes was not detected in any isolate. Resistance to fosfomycin was associated with the absence of transporter UhpT expression and/or the presence of antibiotic-modifying enzymes encoded by fosA3 plasmid-mediated gene. Resistance to nitrofurantoin was associated with modifications of NfsA, NfsB, and RibE proteins. The emergence and spread of these resistance mechanisms, including transferable resistance, could compromise the future usefulness of fosfomycin and nitrofurantoin against UTIs. Furthermore, knowledge of the genetic mechanisms underlying resistance may lead to rapid DNA-based testing for resistance.
    Electronic ISSN: 2079-6382
    Topics: Chemistry and Pharmacology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-29
    Description: Propyl-propane thiosulfinate (PTS) and propyl-propane thiosulfonate (PTSO) are two volatile compounds derived from Allium cepa with a widely documented antimicrobial activity. The aim of this study was to evaluate their anti-candidiasis activity and the ability of its gaseous phase to inhibit bacterial and yeast growth in vitro. The minimum inhibitory concentration of various antifungal products (including PTS and PTSO) was determined versus 203 clinical isolates of Candida spp. through broth microdilution assay. Additionally, the antimicrobial activity through aerial diffusion of PTS and PTSO was evaluated over the growth of a collection of bacteria and yeasts cultivated in agar plates. All yeasts were susceptible to the antifungals tested, except C. glabrata and C. krusei, that showed azole resistance. PTSO (MIC50 and MIC90 ranged from 4 to 16 mg/L and 8 to 32 mg/L, respectively) was significantly more active against yeasts than PTS (MIC50 and MIC90 ranged from 16 to 64 mg/L and 32 to 64 mg/L). Values were higher than those obtained for antifungal drugs. Gaseous phases of PTS and PTSO generated growth inhibition zones whose diameters were directly related to the substances concentration and inversely related to the microbial inoculum. The quantification of PTS and PTSO levels reached in the growth media through aerial diffusion displayed a concentration gradient from the central zone to the periphery. Only P. aeruginosa ATCC 27853 showed resistance, while yeasts (C. albicans ATCC 200955 and C. krusei ATCC 6258) presented the higher susceptibility to both compounds. These results suggest that PTS and PTSO display antibacterial and anti-candidiasis activity in vitro through aerial diffusion, having potential use in human therapy.
    Electronic ISSN: 1424-8247
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...