ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-08-26
    Description: Current medical facilities usually lead to a very high cost especially for developing countries, rural areas and mass casualty incidents. Therefore, advanced electronic health systems are gaining momentum. In this paper, we first compared our novel off the shelf experimental wired Body Sensor Networks (BSN), that is, Digital First Aid (DigiAID) with the existing commercial product called as Hexoskin. We showed the viability of DigiAID through extensive real measurements during daily activities by both male and females. It was found that the major hurdle was wires to be worn by the subjects. Accordingly, we proposed and characterized the wireless DigiAID platform for wireless BSN (WBSN). Understanding the effect of body movements on wireless data transmission in WBSN is also of major importance. Therefore, this paper comprehensively evaluates and analyzes the impact of body movements, (a) to ensure transmission of data at different radio power levels and (b) its impact on the topology of the WBSN. Based on this we have proposed a dynamic power control algorithm that adapts the transmitting power according to the packet reception in an energy efficient manner. The results show that we have achieved substantial power savings at various nodes attached to the human body.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-08
    Description: In recent years, Energy Efficiency (EE) has become a critical design metric for cellular systems. In order to achieve EE, a fine balance between throughput and fairness must also be ensured. To this end, in this paper we have presented various resource block (RB) allocation schemes in relay-assisted Long Term Evolution-Advanced (LTE-A) networks. Driven by equal power and Bisection-based Power Allocation (BOPA) algorithm, the Maximum Throughput (MT) and an alternating MT and proportional fairness (PF)-based SAMM (abbreviated with Authors’ names) RB allocation scheme is presented for a single relay. In the case of multiple relays, the dependency of RB and power allocation on relay deployment and users’ association is first addressed through a k-mean clustering approach. Secondly, to reduce the computational cost of RB and power allocation, a two-step neural network (NN) process (SAMM NN) is presented that uses SAMM-based unsupervised learning for RB allocation and BOPA-based supervised learning for power allocation. The results for all the schemes are compared in terms of EE and user throughput. For a single relay, SAMM BOPA offers the best EE, whereas SAMM equal power provides the best fairness. In the case of multiple relays, the results indicate SAMM NN achieves better EE compared to SAMM equal power and BOPA, and it also achieves better throughput fairness compared to MT equal power and MT BOPA.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-23
    Description: In scenarios, like critical public safety communication networks, On-Scene Available (OSA) user equipment (UE) may be only partially connected with the network infrastructure, e.g., due to physical damages or on-purpose deactivation by the authorities. In this work, we consider multi-hop Device-to-Device (D2D) communication in a hybrid infrastructure where OSA UEs connect to each other in a seamless manner in order to disseminate critical information to a deployed command center. The challenge that we address is to simultaneously keep the OSA UEs alive as long as possible and send the critical information to a final destination (e.g., a command center) as rapidly as possible, while considering the heterogeneous characteristics of the OSA UEs. We propose a dynamic adaptation approach based on machine learning to improve a joint energy-spectral efficiency (ESE). We apply a Q-learning scheme in a hybrid fashion (partially distributed and centralized) in learner agents (distributed OSA UEs) and scheduler agents (remote radio heads or RRHs), for which the next hop selection and RRH selection algorithms are proposed. Our simulation results show that the proposed dynamic adaptation approach outperforms the baseline system by approximately 67% in terms of joint energy-spectral efficiency, wherein the energy efficiency of the OSA UEs benefit from a gain of approximately 30%. Finally, the results show also that our proposed framework with C-RAN reduces latency by approximately 50% w.r.t. the baseline.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-03
    Description: Machine Learning (ML) techniques can play a pivotal role in energy efficient IoT networks by reducing the unnecessary data from transmission. With such an aim, this work combines a low-power, yet computationally capable processing unit, with an NB-IoT radio into a smart gateway that can run ML algorithms to smart transmit visual data over the NB-IoT network. The proposed smart gateway utilizes supervised and unsupervised ML algorithms to optimize the visual data in terms of their size and quality before being transmitted over the air. This relaxes the channel occupancy from an individual NB-IoT radio, reduces its energy consumption and also minimizes the transmission time of data. Our on-field results indicate up to 93% reductions in the number of NB-IoT radio transmissions, up to 90.5% reductions in the NB-IoT radio energy consumption and up to 90% reductions in the data transmission time.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...