ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2005-10-01
    Description: The stratigraphic architecture of a terminal Proterozoic carbonate ramp system (ca. 550 Ma, Nama Group, Namibia) was mapped quantitatively with digital surveying technologies. The carbonate ramp consists of a shoaling-upward ramp sequence in which thrombolite-stromatolite reefs developed at several stratigraphic levels. The reefs are associated with grainstone and heterolithic facies and exhibit diverse geometries and dimensions related to the position in the sequence-stratigraphic framework. Laterally extensive reefs with a tabular geometry developed when accommodation was relatively low, whereas discontinuous oblate dome-shaped reefs developed during times when accommodation space was relatively high. Collecting sedimentological and stratigraphic data digitally in an extensive canyon system allowed a comprehensive documentation of the three-dimensional (3-D) architecture and dimensions of the reefal buildups. Both deterministic and stochastic methods were used to extend outcrop observations to construct 3-D models that honor the observed stratigraphy. In particular, the accuracy with which dimensions of reefal buildups can be measured is critically important in the statistical modeling of the dome-shaped buildups. Calculations and corrections can be applied directly to the digital data set and serve as input during model building. The final 3-D model faithfully reproduces the outcrop distribution of facies and geological objects and has a high spatial resolution, compared with petroleum industry reservoir models. The organization of the reefal buildups in the stratigraphic framework has direct implications for reservoir continuity and connectivity in analogous settings. The digital characterization and 3-D outcrop models presented in this article can be subsequently used to condition dynamic reservoir-simulation modeling of geologically similar areas. Erwin Adams received his M.Sc. degree (1996) and his Ph.D. (2001) in geology from the Vrije Universiteit Amsterdam, Netherlands. He worked for three years at the Massachusetts Institute of Technology (MIT), deploying digital methods for mapping and modeling reservoir-scale carbonate outcrops in the terminal Proterozoic of the Nama Group, Namibia, and the Devonian of the Canning basin, Western Australia. Erwin joined the Carbonate Team at Shell in 2004.John Grotzinger is the Robert Shrock Professor of Geology at MIT. He received degrees in geology from Hobart College (B.Sc.), the University of Montana (M.Sc.), and Virginia Tech (Ph.D.). His research focuses on field-based outcrop studies of reservoir-scale heterogeneity, evaluation of biogeochemical events at the Precambrian–Cambrian boundary, and robotic investigations of the stratigraphic record of Mars. Wesley A. Watters is a graduate student in geophysics at MIT. He studies the effects of large impacts on planetary evolution and is a member of the Mars Exploration Rover Athena Science Team. He also works on problems relating to the morphometry and morphogenesis of stromatolites and early skeletogenous metazoa. Stefan Schröder received geology degrees from the Universities of Würzburg, Germany (M.Sc.), and Bern, Switzerland (Ph.D.). Since then, he has worked at MIT on Neoproterozoic reservoir rocks in Namibia and Oman. He is currently taking a postdoctoral study at the University of Johannesburg and studies Paleoproterozoic carbonates together with Nicolas Beukes. His research focuses on sedimentary processes and environmental factors governing sedimentation in the Precambrian. David McCormick is a senior research scientist and program manager at Schlumberger-Doll Research. He received geology degrees in sedimentology from Dartmouth College (B.A.), Columbia University (M.A.), and MIT (Ph.D.). Before Schlumberger, he worked at Chevron Petroleum Technology Company. His main interests lie in digital mapping and quantification of geology and outcrop analogs for reservoir characterization and modeling. Hisham A. Al-Siyabi holds an M.Sc. (1994) degree and a Ph.D. (1998) from the Colorado School of Mines. Hisham joined Petroleum Development Oman in 1999, and since 2001 has worked as a geologist and seismic interpreter on the South Oman Exploration Team, working exclusively on the terminal Proterozoic intrasalt Ara stringers. In 2005, Hisham joined Shell Exploration and Production Company as an exploration geologist.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-11-01
    Description: In the South Oman salt basin (SOSB), diapirs of infra-Cambrian Ara Salt enclose isolated, commonly overpressured carbonate reservoirs. Hydrocarbon-impregnated black rock salt shows that it has repeatedly lost and then regained its sealing capacity. The black staining is caused by intragranular microcracks and grain boundaries filled with solid bitumen formed by the alteration of oil. The same samples show evidence for crystal plastic deformation and dynamic recrystallization. Subgrain-size piezometry indicates a maximum differential paleostress of less than 2 MPa. Under such low shear stress, laboratory-calibrated dilatancy criteria indicate that oil can only enter the rock salt at near-zero effective stresses, where fluid pressures are very close to lithostatic. In our model, the oil pressure in the carbonate reservoirs increases until it is equal to the fluid pressure in the low but interconnected porosity of the Ara Salt plus the capillary entry pressure. When this condition is met, oil is expelled into the rock salt, which dilates and increases its permeability by many orders of magnitude. Sealing capacity is lost, and fluid flow will continue until the fluid pressure drops below the minimal principal stress, at which point rock salt will reseal to maintain the fluid pressure at lithostatic values. Johannes Schoenherr received his diploma from the Technical University of Darmstadt, Germany, with main emphasis in structural geology. Johannes is currently a Ph.D. student at Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Germany. His research is focused on the diagenesis and organic geochemistry of intrasalt carbonates and evaporites from the South Oman salt basin. His further interests are in microtectonics involving the geomechanics of rock salt. Janos L. Urai is currently a professor of structural geology, tectonics, and geomechanics at RWTH Aachen University and program director of the Department of Applied Geoscience, Oman-German University of Technology in Muscat, Oman. He is interested in basic and applied aspects of rock deformation in the presence of fluids at a wide range of scales in hydrocarbon reservoirs. Peter A. Kukla graduated in geology from Wuerzburg University, Germany, and Witwatersrand University, South Africa (Ph.D.). His professional career included positions at Witwatersrand University (1986–1990), Shell International E&P (1991–2000), and at RWTH Aachen University (since 2000) as full professor of geology and head of the department and director of the Geological Institute, with research focus on applied sedimentology, reservoir geology, and quantitative geodynamics. Ralf Littke is a professor of geology and geochemistry of petroleum and coal at RWTH Aachen University, Germany. Ralf's current research topics include dynamics of sedimentary basins, with special emphasis on temperature and pressure history; generation of hydrocarbon gases and nonhydrocarbon gases as well as petroleum; transport and accumulation of methane and carbon dioxide; and development of new tools in petroleum system modeling. Zsolt Schléder received his M.Sc. degree from the Eötvös University, Budapest, Hungary, in 2001 and his Ph.D. from the RWTH Aachen University, Germany, in 2006. He is currently working at Midland Valley Exploration, Ltd., as a structural geologist. His research efforts are focused on deformation and recrystallization mechanisms in rock salt. His current interest is in two- and three-dimensional structural restoration technology. Jean-Michel Larroque has a Ph.D. in structural geology from Montpellier University (France) and joined the Shell structural geology team in 1988. He had assignments in the United Kingdom, Germany, and Oman as South Oman Exploration team leader. Previously, he was Shell Exploration chief geoscientist for the Middle East and the Caspian. He is now exploration manager for Shell Syria. Mark J. Newall is a senior exploration geologist in Frontier Exploration in Shell, Egypt. He has a Ph.D. from Liverpool University (1990) and, since joining Shell, has worked as an explorationist in Holland, Malaysia, and Oman, before moving to Cairo in 2005. He is currently exploring for gas in the Nile delta. Nadia Al-Abry holds a Ph.D. (2002) from the University of Edinburgh. Nadia joined Petroleum Development Oman in October 2002 and since then has been working on the Precambrian intrasalt Ara carbonate stringers first as an exploration team geologist and seismic interpreter and then as a production geologist. Her research interests are in the tectonic evolution of basins and its influence on sedimentation and reservoir architecture. Hisham A. Al-Siyabi holds an M.S. degree (1994) and a Ph.D. (1998) from the Colorado School of Mines. Hisham joined Petroleum Development Oman in 1999 and, since 2001, has worked as a geologist and seismic interpreter exclusively on the terminal Proterozoic intrasalt Ara stringers. In 2005, Hisham joined Shell Exploration and Production Company in the United States as an exploration geologist. Zuwena Rawahi is a senior carbonate geologist in Petroleum Development Oman and has been working on the Precambrian stringer play on the South Oman exploration team for the last 3 years. Prior to that, she worked for 7 years on the Shuaiba Formation. Her main interest is related to carbonate sedimentology and diagenesis.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...