ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-06-01
    Print ISSN: 0032-0633
    Electronic ISSN: 1873-5088
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-10
    Print ISSN: 1086-9379
    Electronic ISSN: 1945-5100
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-01
    Print ISSN: 0094-5765
    Electronic ISSN: 1879-2030
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-02-01
    Print ISSN: 0021-9991
    Electronic ISSN: 1090-2716
    Topics: Computer Science , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Cartesian methods for computational fluid dynamics are considered to offer an accurate and robust approach for the simulation of aerodynamic flows around geometrically complex bodies. A part of the ongoing research in this domain is reviewed with the aim of providing insight into the fundamental challenges faced by the practitioners of this approach, and a guide to further research. The integration schemes used in Cartesian solvers are similar to those used in other approaches. The emphasis is on the geometric algorithms, surface modeling and boundary conditions required to design a successful Cartesian mesh scheme.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: The 28th Computational Fluid Dynamics; Volume 1; VKI-LS-1997-02-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: With the recent focus on the needs of design and applications CFD, research groups have begun to address the traditional bottlenecks of grid generation and surface modeling. Now, a host of emerging technologies promise to shortcut or dramatically simplify the simulation process. This paper discusses the current status of these emerging technologies. It will argue that some tools are already available which can have positive impact on portions of the design cycle. However, in most cases, these tools need to be integrated into specific engineering systems and process cycles to be used effectively. The rapidly maturing status of unstructured and Cartesian approaches for inviscid simulations makes suggests the possibility of highly automated Euler-boundary layer simulations with application to loads estimation and even preliminary design. Similarly, technology is available to link block structured mesh generation algorithms with topology libraries to avoid tedious re-meshing of topologically similar configurations. Work in algorithmic based auto-blocking suggests that domain decomposition and point placement operations in multi-block mesh generation may be properly posed as problems in Computational Geometry, and following this approach may lead to robust algorithmic processes for automatic mesh generation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 359-384
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-29
    Description: An embedded-boundary Cartesian-mesh flow solver is coupled with a three degree-offreedom structural model to perform static, aeroelastic analysis of complex aircraft geometries. The approach solves the complete system of aero-structural equations using a modular, loosely-coupled strategy which allows the lower-fidelity structural model to deform the highfidelity CFD model. The approach uses an open-source, 3-D discrete-geometry engine to deform a triangulated surface geometry according to the shape predicted by the structural model under the computed aerodynamic loads. The deformation scheme is capable of modeling large deflections and is applicable to the design of modern, very-flexible transport wings. The interface is modular so that aerodynamic or structural analysis methods can be easily swapped or enhanced. This extended abstract includes a brief description of the architecture, along with some preliminary validation of underlying assumptions and early results on a generic 3D transport model. The final paper will present more concrete cases and validation of the approach. Preliminary results demonstrate convergence of the complete aero-structural system and investigate the accuracy of the approximations used in the formulation of the structural model.
    Keywords: Aeronautics (General); Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN10082 , 2014 AIAA SciTech Conference; 13-17 Jan. 2014; National Harbor, Maryland; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: This report describes recent progress in the development and application of 3D Cartesian grid generation and Euler flow solution techniques. Improvements to flow field grid generation algorithms, geometry representations, and geometry refinement criteria are presented, including details of a procedure for correctly identifying and resolving extremely thin surface features. An initial implementation of automatic flow field refinement is also presented. Results for several 3D multi-component configurations are provided and discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 225-249
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: Inlets and exhaust nozzles are common place in the world of flight. Yet, many aerodynamic simulation packages do not provide a method of modelling such high energy boundaries in the flow field. For the purposes of aerodynamic simulation, inlets and exhausts are often fared over and it is assumed that the flow differences resulting from this assumption are minimal. While this is an adequate assumption for the prediction of lift, the lack of a plume behind the aircraft creates an evacuated base region thus effecting both drag and pitching moment values. In addition, the flow in the base region is often mis-predicted resulting in incorrect base drag. In order to accurately predict these quantities, a method for specifying inlet and exhaust conditions needs to be available in aerodynamic simulation packages. A method for a first approximation of a plume without accounting for chemical reactions is added to the Cartesian mesh based aerodynamic simulation package CART3D. The method consists of 3 steps. In the first step, a components approach where each triangle is assigned a component number is used. Here, a method for marking the inlet or exhaust plane triangles as separate components is discussed. In step two, the flow solver is modified to accept a reference state for the components marked inlet or exhaust. In the third step, the flow solver uses these separated components and the reference state to compute the correct flow condition at that triangle. The present method is implemented in the CART3D package which consists of a set of tools for generating a Cartesian volume mesh from a set of component triangulations. The Euler equations are solved on the resulting unstructured Cartesian mesh. The present methods is implemented in this package and its usefulness is demonstrated with two validation cases. A generic missile body is also presented to show the usefulness of the method on a real world geometry.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 42nd AIAA Aerospace Sciences Meeting and Exhibit; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: This demo will rewew the findings of the Shuttle's Debris Transport analysis. The demo focuses on aero analysis of the entlre vehicle in ascent (orbiter, SRB and ET together at low Mach number) for debris transoort and determining maximum allowable debris sizes from various sources. We will present analysis results along with performance data of the simulation runs on Supercomputers such as Columbia.
    Keywords: Spacecraft Propulsion and Power
    Type: Supercomputing 2004; Nov 06, 2004 - Nov 12, 2004; Pittsburgh, PA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...