ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Abstract Thermal history models, historically used to understand Earth's geologic history, are being coupled to climate models to map conditions that allow planets to maintain life. However, the lack of structural uncertainty assessment has blurred guidelines for how thermal history models can be used toward this end. Structural uncertainty is intrinsic to the modeling process. Model structure refers to the cause and effect relations that define a model and are assumed to adequately represent a particular real world system. Intrinsic/structural uncertainty is different from input and parameter uncertainties (which are often evaluated for thermal history models). A full uncertainty assessment requires that input/parametric and intrinsic/structural uncertainty be evaluated (one is not a substitute for the other). We quantify the intrinsic uncertainty for several parameterized thermal history models (a subclass of planetary models). We use single perturbation analysis to determine the reactance time of different models. This provides a metric for how long it takes low‐amplitude, unmodeled effects to decay or grow. Reactance time is shown to scale inversely with the strength of the dominant model feedback (negative or positive). A perturbed physics analysis is then used to determine uncertainty shadows for model outputs. This provides probability distributions for model predictions. It also tests the structural stability of a model (do model predictions remain qualitatively similar, and within assumed model limits, in the face of intrinsic uncertainty?). Once intrinsic uncertainty is accounted for, model outputs/predictions and comparisons to observational data should be treated in a probabilistic way.
    Print ISSN: 2169-9097
    Electronic ISSN: 2169-9100
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-02
    Description: Nature Geoscience 9, 417 (2016). doi:10.1038/ngeo2707 Authors: Cin-Ty A. Lee, Laurence Y. Yeung, N. Ryan McKenzie, Yusuke Yokoyama, Kazumi Ozaki & Adrian Lenardic
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-08-25
    Description: SUMMARY Boundary layer theory is used to derive scaling relationships for plate stresses in a mantle convection system with a low-viscosity asthenosphere. The theory assumes a plate tectonic like mode of mantle convection with flow driven by an active upper boundary layer. The theory predicts that the confinement of horizontal mantle flow within a low-viscosity, sublithospheric channel can lead to an increase in plate stress compared to the case lacking a channel (even if the absolute viscosity of the sublithosphere mantle does not change between the two cases). The theory further predicts increasing shear stress with decreasing low-viscosity channel thickness. If the thickness of tectonic plates is determined dominantly by a dehydrated chemical lithosphere, then the plate normal stress is predicted to also increase with decreasing channel thickness. We use 3-D spherical shell simulations of mantle convection with temperature-, depth- and stress dependent rheology to test scaling trends. The simulations and theoretical scalings demonstrate that a low-viscosity layer (asthenosphere) can amplify convective stresses. If the level of convective stress plays a role in maintaining and/or reactivating plate boundaries, this suggests that a relatively thin low viscosity layer may help to maintain plate tectonics. The numerical simulations support this suggestion as they show that an increase in the thickness of a low viscosity channel can cause the system to transition from an active-lid mode of convection to a stagnant lid state. Collectively, the simulations and theoretical scalings lead to the conclusion that the role of the asthenosphere in maintaining plate tectonics does not come principally from a basal lubrication effect, associated with a low absolute asthenosphere viscosity, but, instead, from a mantle flow channelization effect, associated with a high viscosity contrast from the asthenosphere to the mantle below.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-10-27
    Description: Tectonic plate motions reflect dynamical contributions from subduction processes (i.e., classical “slab-pull” forces) and lateral pressure gradients within the asthenosphere (“asthenosphere-drive” forces), which are distinct from gravity forces exerted by elevated mid-ocean ridges (i.e., classical “ridge-push” forces). Here we use scaling analysis to show that the extent to which asthenosphere-drive contributes to plate motions depends on the lateral dimension of plates and on the relative viscosities and thicknesses of the lithosphere and asthenosphere. Whereas slab-pull forces always govern the motions of plates with a lateral extent greater than the mantle depth, asthenosphere-drive forces can be relatively more important for smaller (shorter wavelength) plates, large relative asthenosphere viscosities or large asthenosphere thicknesses. Published plate velocities, tomographic images and age-binned mean shear wave velocity anomaly data allow us to estimate the relative contributions of slab-pull and asthenosphere-drive forces for the motions of the Atlantic and Pacific plates. Whereas the Pacific plate is driven largely by slab pull, the Atlantic plate is predicted to be strongly driven by basal forces related to viscous coupling to strong asthenospheric flow, consistent with recent observations related to the stress state of North America. In addition, compared to the East Pacific Rise (EPR), the relatively large lateral pressure gradient near the Mid-Atlantic Ridge (MAR) is expected to produce significantly steeper dynamic topography. Thus, the relative importance of this plate-driving force may partly explain why the flanking topography at the EPR is smoother than at the MAR. Our analysis also indicates that this plate-driving force was more significant, and heat loss less efficient, in Earth's hotter past compared with its cooler present state. This type of trend is consistent with thermal history modeling results which require less efficient heat transfer in Earth's past.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Abstract The current goals of the astrobiology community are focused on developing a framework for the detection of biosignatures, or evidence thereof, on objects inside and outside of our solar system. A fundamental aspect of understanding the limits of habitable environments (surface liquid water) and detectable signatures thereof is the study of where the boundaries of such environments can occur. Such studies provide the basis for understanding how a once inhabitable planet might come to be uninhabitable. The archetype of such a planet is arguably Earth's sibling planet, Venus. Given the need to define the conditions that can rule out bio‐related signatures of exoplanets, Venus provides a unique opportunity to explore the processes that led to a completely uninhabitable environment by our current definition of the term. Here we review the current state of knowledge regarding Venus, particularly in the context of remote‐sensing techniques that are being or will be employed in the search for and characterization of exoplanets. We discuss candidate Venus analogs identified by the Kepler and TESS exoplanet missions and provide an update to exoplanet demographics that can be placed in the potential runaway greenhouse regime where Venus analogs are thought to reside. We list several major outstanding questions regarding the Venus environment and the relevance of those questions to understanding the atmospheres and interior structure of exoplanets. Finally, we outline the path toward a deeper analysis of our sibling planet and the synergy to exoplanetary science.
    Print ISSN: 2169-9097
    Electronic ISSN: 2169-9100
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-12-14
    Description: We use a parameterized convection model to investigate the effects of deep water cycling on the thermal evolution of an Earth-like planet. The model incorporates two water reservoirs, a surface and an interior mantle reservoir. Exchange between the two is calculated using a mantle convection parameterization that allows for temperature- and water-dependent mantle viscosity together with internally self-consistent degassing and regassing parameterizations. The balance between degassing and regassing depends on the average spreading rate of tectonic plates, the amount of water partitioned into melt, the thickness of a mantle melt zone, and of a hydrated layer at the top of subducting plates. Degassing scales with melt zone thickness such that an early period of extensive melting would create a drier and more viscous mantle, shifting the solidus line in a direction that would reduce the melt zone thickness and the rate of mantle heat loss. Coupling a hydrated zone thickness-dependent regassing factor to the model, to mimic water delivery to the mantle via a serpentinized layer, allows for the potential of a reversing point where the overall water flow direction switches from degassing to regassing as the mantle cools. The water effect on viscosity creates a negative feedback that tends to regulate the final amount of water in the mantle so it is not strongly dependent on the initial amount of planetary water. The final amount of water in the surface reservoir is then determined by this feedback effect together with the initial water budget of the entire planet. This implies that if the initial water budget of a planet can be estimated, from planetary formation models, then the volume of surface water can be used to estimate the volume of water in the mantle of an Earth-like planet. Applying this methodology to the Earth leads to predictions for water concentration in the Earth's mantle that are in line with geochemical and petrological constraints.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Springer Nature
    Publication Date: 2017-01-05
    Description: Nature Geoscience 10, 4 (2017). doi:10.1038/ngeo2862 Author: Adrian Lenardic 180 million years ago Earth's continents were amalgamated into one supercontinent called Pangaea. Analysis of oceanic crust formed since that time suggests that the cooling rate of Earth was enhanced in the wake of Pangaea's dispersal.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2020-09-04
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-04-22
    Print ISSN: 0004-637X
    Electronic ISSN: 1538-4357
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...