ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-08
    Description: The STInno project, which was part of the EU Framework Programme 7 aimed to minimise the distance between south–north regions in Europe with a specific focus on wastewater treatment clusters. Three triple helix collaborations from three different countries participated, using their knowledge to work on a case study of olive mill wastewaters. The objective of this paper was to study how the triple helix functioned in practice. Results showed that a management model of the triple helix is somewhat different from the analytical model. A shift between these two views occurred during the project and the participants had to relate to this, as it had an effect on the outcomes. Concepts of social capital and trust are used to further elaborate on this by emphasising the importance of the people side of the triple helix and how the original, analytical model can be limiting when used in management practice.
    Print ISSN: 0302-3427
    Electronic ISSN: 1471-5430
    Topics: Nature of Science, Research, Systems of Higher Education, Museum Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-18
    Description: The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seddon, Alistair W R -- Macias-Fauria, Marc -- Long, Peter R -- Benz, David -- Willis, Kathy J -- England -- Nature. 2016 Mar 10;531(7593):229-32. doi: 10.1038/nature16986. Epub 2016 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Bergen, Allegaten 41, N-500 Bergen, Norway. ; School of Geography and the Environment, South Parks Road, University of Oxford, Oxford OX1 3QY, UK. ; Long-Term Ecology Laboratory, Biodiversity Institute, Oxford Martin School, Department of Zoology, South Parks Road, University of Oxford, Oxford OX1 3PS, UK. ; Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26886790" target="_blank"〉PubMed〈/a〉
    Keywords: *Acclimatization ; Americas ; Arctic Regions ; Asia ; Australia ; *Climate Change ; *Ecosystem ; Environmental Monitoring ; *Geographic Mapping ; Human Activities ; Models, Theoretical ; *Plant Physiological Phenomena ; Rainforest ; Temperature ; Time Factors ; Trees ; Water/analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-10
    Description: A long-standing question in palaeoecology has been to determine the importance of climate driving vegetation change since the last deglaciation. Here, we investigate the local-to-regional dynamics of vegetation change during the Lateglacial and the Holocene in Northern Europe. We extracted sites from the European Pollen Database and used the squared-chord distance (SCD) dissimilarity metric to identify time periods of high pollen assemblage turnover representing periods of abrupt vegetation change. In addition, a set of generalized additive mixed models were applied to investigate the underlying dynamics of two periods of higher rates of turnover: the Younger Dryas–early Holocene transition (YD-EH; 11.6–9.0 kyr) and early–middle Holocene (EMH; 9.0–6.0 kyr). Results revealed a high frequency of turnover events between 12.75–11.5, 10.75–11, 10.25–10, 7.75–7.25, 3.25–3.0 and 1.75–.25 kyr. Furthermore, there was a strong linear relationship between pollen assemblage turnover and large directional temperature changes during the abrupt climate changes of the Lateglacial–early Holocene transition. In contrast, patterns of turnover during the Holocene were generally site-specific and during the EMH, we found evidence that the vegetation response was non-linear and highly variable across and between regions. Our results have implications for understanding the relationship between threshold dynamics and the amplitude of an extrinsic forcing. Across the Lateglacial–early Holocene boundary, the rate and magnitude of temperature change were large enough to override any site-specific thresholds, resulting in large assemblage turnovers. In contrast, during the Holocene, the vegetation response was mediated by intrinsic factors, which resulted in varying turnover rates between regions. The next research challenge is to attempt to determine whether it is possible to appreciate the velocity and rate of change that is necessary to result in these different responses and whether this rate is the same across biomes.
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-14
    Description: There is a rapidly emerging interest in detecting and understanding biodiversity trends during the ‘Anthropocene’ in response to human stressors and climate change. Surprisingly few studies have, however, considered trends in biodiversity during the preceding Holocene. Here, we present general trends in terrestrial alpha- and beta-diversity and biomass for the four main ecological phases (protocratic, mesocratic, Homo sapiens , oligocratic) of the Holocene in north-west Europe based on palynological data at the meta-community scale. Alpha- and beta-diversity decreased in the protocratic, showed little change in the mesocratic, decreased in the oligocratic, and increased markedly in the Homo sapiens phase. Biomass was maximal in the mesocratic. Biodiversity changes in the last 200 years (‘Anthropocene’), as detected from palynological data, are small compared with the changes over the Holocene. There are minor decreases in α-diversity, spatial β-diversity and biomass and a slight increase in temporal β-diversity at sites on fertile soils. This analysis is designed to encourage ecologists and biogeographers interested in the ‘Anthropocene’ to extend the time-scale of their analyses and to consider whether ‘Anthropocene’ biodiversity trends are a simple continuation of trends in the late Holocene or whether recent ‘Anthropocene’ trends deviate from the long-term Holocene trends. Hopefully, it will also stimulate palaeoecologists to consider Holocene biodiversity trends in different geographical areas and different organism groups and ecological systems.
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...