ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-09-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chou, C K -- Guy, A W -- Foster, K R -- Galambos, R -- Justesen, D R -- New York, N.Y. -- Science. 1980 Sep 5;209(4461):1143-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7403877" target="_blank"〉PubMed〈/a〉
    Keywords: *Hearing ; *Holography ; Humans ; *Microwaves
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 4 (1983), S. 341-355 
    ISSN: 0197-8462
    Keywords: microwaves ; microwave hyperthermia ; fever ; febrile convulsions ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: While convulsions associated with fever represent a serious problem in pediatric medicine, conventional animal models of febrile convulsions suffer numerous technical limitations. A microwave-hyperthermia model that eliminates these problems was tested. Microwave energy was used to increase the core temperature of 13- and 17-day-old rats, resulting in convulsions similar to febrile convulsions in human infants. Rats were irradiated for 10 min in circularly polarized waveguides at 918 MHz, CW (average SAR = 9.4 W/kg at 13 days and 18.0 W/kg at 17 days as determined by twin-well calorimetry). Day 17 irradiated rats were less susceptible to convulsions than were day 13 irradiated rats, indicating an age-dependent decline in susceptibility. Contrary to findings of earlier models using infrared or hot-oven heating, convulsions induced with microwave hyperthermia impaired neither brain growth nor subsequent performance during behavioral testing. Simultaneous measurement of brain and rectal temperatures during microwave irradiation revealed differential heating rates that favor thermal homeostasis in brain tissue.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 5 (1984), S. 203-211 
    ISSN: 0197-8462
    Keywords: microwaves ; pentobarbital ; hypothermia ; exposure orientation ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Two series of experiments were performed to study the effects of acute exposure (45 min) to 2,450-MHz circularly polarized, pulsed microwaves [1 mW/cm2, 2-μs pulses, 500 pps, specific absorption rate (SAR) 0.6 W/kg] on the actions of pentobarbital in the rat. In the first experiment, rats were irradiated with microwaves and then immediately injected with pentobarbital. Microwave exposure did not significantly affect the extent of the pentobarbital-induced fall in colonic temperature. However, the rate of recovery from the hypothermia was significantly slower in the microwave-irradiated rats and they also took a significantly longer time to regain their righting reflex. In a second experiment, rats were first anesthetized with pentobarbital and then exposed to microwaves with their heads either pointing toward the source of microwaves (anterior exposure) or pointing away (posterior exposure). Microwave radiation significantly retarded the pentobarbital-induced fall in colonic temperature regardless of the orientation of exposure. However, the recovery from hypothermia was significantly faster in posterior-exposed animals compared to those of the anterior-exposed and sham-irradiated animals. Furthermore, the posterior-exposed rats took a significantly shorter time to regain their righting reflex than both the anterior-exposed and sham-irradiated animals.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 5 (1984), S. 213-220 
    ISSN: 0197-8462
    Keywords: microwaves ; ethanol ; hypothermia ; fluid consumption ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Microwave irradiation of rats by circularly polarized, 2,450-MHz, pulsed waves (2-μs pulses; 500 pps) was performed in waveguides to determine effects on ethanol-induced hypothermia and on ethanol consumption. Rats injected intraperitoneally with ethanol (3 g/kg in a 25% v/v water solution) immediately after 45 min of microwave irradiation exhibited attenuation of the initial rate of fall in body temperature, which was elicited by the ethanol, but exhibited no significant difference in maximal hypothermia as compared with that of sham-irradiated rats. Microwave irradiation did not affect the consumption of a 10% sucrose (w/v) solution by water-deprived rats. However, it enhanced the consumption of a solution of 10% sucrose (w/v) + 15% ethanol (v/v) by water-deprived animals. These results were obtained at a specific absorption rate (SAR) of 0.6 W/kg, which rate of energy dosing would require a power density of 3-6 mW/cm2 if exposure of the animals had occurred to a 12-cm plane wave.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 57-66 
    ISSN: 0197-8462
    Keywords: microwaves ; benzodiazepine receptors ; cerebral cortex ; hippocampus ; cerebellum ; acute and repeated exposure ; adaptation ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: We studied the effects of single (45 min) and repeated (ten daily 45-min sessions) microwave exposures (2450-MHz, 1 mW/cm2, average whole-body SAR of 0.6 W/kg. pulsed at 500 pps with pulse width of 2 μs) on the concentration and affinity of benzodiazepine receptors in the cerebral cortex, hippocampus, and cerebellum of the rat. We used a receptor-binding assay with 3H-flunitrazepam as ligand. Immediately after a single exposure, an increase in the concentration of receptor was observed in the cerebral cortex, but no significant effect was observed in the hippocampus or cerebellum. No significant change in binding affinity of the receptors was observed in any of the brain-regions studied. In rats subjected to repeated exposures, no significant change in receptor concentration was found in the cerebral cortex immediately after the last exposure, which may indicate an adaptation to repeated exposures. Our data also show that handling and exposure procedures in our experiments did not significantly affect benzodiazepine receptors in the brain. Because benzodiazepine receptors in the brain are responsive to anxiety and stress, our data support the hypothesis that low-intensity microwave irradiation can be a source of stress.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 12 (1991), S. 27-33 
    ISSN: 0197-8462
    Keywords: microwaves ; muscarinic cholinergic receptors ; frontal cortex ; hippocampus ; naltrexone ; endogenous opioids ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Repeated exposure of rats to pulsed, circularly polarized microwaves (2,450-MHz, 2-μs pulses at 500 pps, power density 1 mW/cm2, at an averaged, whole-body SAR of 0.6 W/kg) induced biphasic changes in the concentration of muscarinic cholinergic receptors in the central nervous system. An increase in receptor concentration occurred in the hippocampus of rats subjected to ten 45-min sessions of microwave exposure, whereas a decrease in concentration was observed in the frontal cortex and hippocampus of rats exposed to ten 20-min sessions. These findings, which confirm earlier work in the authors' laboratory, were extended to include pretreatment of rats with the narcotic antagonist naltrexone (1 mg/kg, IP) before each session of exposure. The drug treatment blocked the microwave-induced changes in cholinergic receptors in the brain. These data further support the authors' hypothesis that endogenous opioids play a role in the effects of microwaves on central cholinergic systems.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 5 (1984), S. 263-270 
    ISSN: 0197-8462
    Keywords: frog ; heart rate ; microwaves ; electrodes ; bradycardia ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: One hundred and two isolated frog hearts were divided into ten groups and placed individually in a waveguide filled with Ringer's solution and exposed to 2,450-MHz CW radiation at 2 and 8.55 W/kg. Heart rate was recorded using one of the following methods: 3-M KCl glass electrode, ultrasound probe, tension transducer, Ringer's solution glass electrode, and a metal wire inserted in the Ringer's solution electrode. An accelerated decrease of heart rate was observed only in those groups recorded using the 3-M KCl electrode and the metal wire Ringer's solution electrode. No effect was found in the other groups. These results indicate that bradycardia in isolated hearts could be caused by electrode artifacts resulting from the intensification of electromagnetic fields.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 469-496 
    ISSN: 0197-8462
    Keywords: Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Our goal was to investigate effects of long-term exposure to pulsed microwave radiation. The major emphasis was to expose a large sample of experimental animals throughout their lifetimes and to monitor them for effects on general health and longevity.An exposure facility was developed that enabled 200 rats to be maintained under specific-pathogen-free (SPF) conditions while housed individually in circularly-polarized waveguides. The exposure facility consisted of two rooms, each containing 50 active waveguides and 50 waveguides for sham (control) exposures. The experimental rats were exposed to 2,450-MHz pulsed microwaves at 800 pps with a 10-μs pulse width. The pulsed microwaves were square-wave modulated at 8-Hz. Whole body calorimetry, thermographic analysis, and power-meter analysis indicated that microwaves delivered at 0.144 W to each exposure waveguide resulted in an average specific absorption rate (SAR) that ranged from 0.4 W/kg for a 200-g rat to 0.15 W/kg for an 800-g rat.Two hundred male, Sprague-Dawley rats were assigned in equal numbers to radiation-exposure and sham-exposure conditions. Exposure began at 8 weeks of age and continued daily, 21.5 h/day, for 25 months. Animals were bled at regular intervals and blood samples were analyzed for serum chemistries, hematological values, protein electrophoretic patterns, thyroxine, and plasma corticosterone levels. In addition to daily measures of body mass, food and water consumption by all animals, O2 consumption and CO2 production were periodically measured in a sub-sample (N=18) of each group. Activity was assessed in an open-field apparatus at regular intervals throughout the study. After 13 months, 10 rats from each group were euthanatized to test for immunological competence and to permit whole-body analysis, as well as gross and histopathological examinations. At the end of 25 months, the survivors (11 sham-exposed and 12 radiation-exposed rats) were euthanatized for similar analyses. The other 157 animals were examined histopathologically when they died spontaneously or were terminated in extremis.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 237-246 
    ISSN: 0197-8462
    Keywords: microwaves ; opioid receptor subtypes ; high-affinity choline uptake ; frontal cortex ; hippocampus ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: We performed experiments to investigate subtypes of opioid receptors in the brain involved in the effect of acute (45 min) pulsed microwave exposure (2,450-MHz, 2-μs pulses, 500 pps, average power density 1 mW/cm2, peak-power density, 1 W/cm2, average whole body SAR 0.6 W/kg) on cholinergic activity in the rat brain. Rats were pretreated by microinjection of specific antagonists of μ, δ, and κ opioid-receptors into the lateral cerebroventricle before exposure to microwaves. The data showed that all three subtypes of opioid receptors are involved in the microwave-induced decrease in cholinergic activity in the hippocampus. However, the microwave-induced decrease in cholinergic activity in the frontal cortex was not significantly affected by any of the drug treatments, confirming our previous conclusion that the effect of microwaves on the frontal cortex is not mediated by endogenous opioids. © 1992 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 6 (1985), S. 111-114 
    ISSN: 0197-8462
    Keywords: Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...