ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-02-21
    Description: Hepatitis C virus (HCV) is a significant public health concern with approximately 160 million people infected worldwide. HCV infection often results in chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. No vaccine is available and current therapies are effective against some, but not all, genotypes. HCV is an enveloped virus with two surface glycoproteins (E1 and E2). E2 binds to the host cell through interactions with scavenger receptor class B type I (SR-BI) and CD81, and serves as a target for neutralizing antibodies. Little is known about the molecular mechanism that mediates cell entry and membrane fusion, although E2 is predicted to be a class II viral fusion protein. Here we describe the structure of the E2 core domain in complex with an antigen-binding fragment (Fab) at 2.4 A resolution. The E2 core has a compact, globular domain structure, consisting mostly of beta-strands and random coil with two small alpha-helices. The strands are arranged in two, perpendicular sheets (A and B), which are held together by an extensive hydrophobic core and disulphide bonds. Sheet A has an IgG-like fold that is commonly found in viral and cellular proteins, whereas sheet B represents a novel fold. Solution-based studies demonstrate that the full-length E2 ectodomain has a similar globular architecture and does not undergo significant conformational or oligomeric rearrangements on exposure to low pH. Thus, the IgG-like fold is the only feature that E2 shares with class II membrane fusion proteins. These results provide unprecedented insights into HCV entry and will assist in developing an HCV vaccine and new inhibitors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126800/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126800/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khan, Abdul Ghafoor -- Whidby, Jillian -- Miller, Matthew T -- Scarborough, Hannah -- Zatorski, Alexandra V -- Cygan, Alicja -- Price, Aryn A -- Yost, Samantha A -- Bohannon, Caitlin D -- Jacob, Joshy -- Grakoui, Arash -- Marcotrigiano, Joseph -- AI070101/AI/NIAID NIH HHS/ -- DK083356/DK/NIDDK NIH HHS/ -- P50 GM103368/GM/NIGMS NIH HHS/ -- P51 OD011132/OD/NIH HHS/ -- P51 RR000165/RR/NCRR NIH HHS/ -- R01 AI070101/AI/NIAID NIH HHS/ -- R01 AI080659/AI/NIAID NIH HHS/ -- R01 DK083356/DK/NIDDK NIH HHS/ -- RR-00165/RR/NCRR NIH HHS/ -- T32 AI007403/AI/NIAID NIH HHS/ -- T32 AI007610/AI/NIAID NIH HHS/ -- England -- Nature. 2014 May 15;509(7500):381-4. doi: 10.1038/nature13117. Epub 2014 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 679 Hoes Lane West, Piscataway, New Jersey 08854, USA. ; Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, Georgia 30322, USA. ; 1] Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, Georgia 30322, USA [2] Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, Georgia 30322, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24553139" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Disulfides/chemistry ; Hepacivirus/*chemistry/physiology ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulin Fab Fragments/chemistry/metabolism ; Immunoglobulin G/chemistry ; Models, Molecular ; Protein Folding ; Protein Structure, Tertiary ; Scattering, Small Angle ; Surface Properties ; Viral Envelope Proteins/*chemistry/metabolism ; Viral Fusion Proteins ; Viral Hepatitis Vaccines ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...