ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-06-16
    Description: Most microalgae are obligate photoautotrophs and their growth is strictly dependent on the generation of photosynthetically derived energy. We show that the microalga Phaeodactylum tricornutum can be genetically engineered to thrive on exogenous glucose in the absence of light through the introduction of a gene encoding a glucose transporter (glut1 or hup1). This demonstrates that a fundamental change in the metabolism of an organism can be accomplished through the introduction of a single gene. This also represents progress toward the use of fermentation technology for large-scale commercial exploitation of algae by reducing limitations associated with light-dependent growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zaslavskaia, L A -- Lippmeier, J C -- Shih, C -- Ehrhardt, D -- Grossman, A R -- Apt, K E -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):2073-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Martek Biosciences Corp., 6480 Dobbin Road, Columbia, MD 21045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11408656" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Transport ; Cell Line, Transformed ; Cell Membrane/metabolism ; Darkness ; Diatoms/*genetics/growth & development/*metabolism ; *Genetic Engineering ; Glucose/*metabolism ; Glucose Transporter Type 1 ; Glycolysis ; Green Fluorescent Proteins ; Humans ; Light ; Luminescent Proteins/genetics/metabolism ; Membrane Proteins/genetics/metabolism ; Microscopy, Confocal ; Molecular Weight ; Monosaccharide Transport Proteins/chemistry/*genetics/metabolism ; Photosynthesis ; Recombinant Fusion Proteins/metabolism ; Symporters ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-11-27
    Description: Light is necessary for photosynthesis, but its absorption by pigment molecules such as chlorophyll can cause severe oxidative damage and result in cell death. The excess absorption of light energy by photosynthetic pigments has led to the evolution of protective mechanisms that operate on the timescale of seconds to minutes and involve feedback-regulated de-excitation of chlorophyll molecules in photosystem II (qE). Despite the significant contribution of eukaryotic algae to global primary production, little is known about their qE mechanism, in contrast to that in flowering plants. Here we show that a qE-deficient mutant of the unicellular green alga Chlamydomonas reinhardtii, npq4, lacks two of the three genes encoding LHCSR (formerly called LI818). This protein is an ancient member of the light-harvesting complex superfamily, and orthologues are found throughout photosynthetic eukaryote taxa, except in red algae and vascular plants. The qE capacity of Chlamydomonas is dependent on environmental conditions and is inducible by growth under high light conditions. We show that the fitness of the npq4 mutant in a shifting light environment is reduced compared to wild-type cells, demonstrating that LHCSR is required for survival in a dynamic light environment. Thus, these data indicate that plants and algae use different proteins to dissipate harmful excess light energy and protect the photosynthetic apparatus from damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peers, Graham -- Truong, Thuy B -- Ostendorf, Elisabeth -- Busch, Andreas -- Elrad, Dafna -- Grossman, Arthur R -- Hippler, Michael -- Niyogi, Krishna K -- England -- Nature. 2009 Nov 26;462(7272):518-21. doi: 10.1038/nature08587.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19940928" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization/radiation effects ; Algal Proteins/genetics/*metabolism ; Cell Survival/radiation effects ; Chlamydomonas reinhardtii/cytology/genetics/*metabolism/radiation effects ; Chlorophyll/metabolism ; Fluorescence ; Genetic Complementation Test ; Light-Harvesting Protein Complexes/genetics/*metabolism ; Mutation ; *Photosynthesis/radiation effects ; RNA, Messenger/genetics/metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-10-13
    Description: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merchant, Sabeeha S -- Prochnik, Simon E -- Vallon, Olivier -- Harris, Elizabeth H -- Karpowicz, Steven J -- Witman, George B -- Terry, Astrid -- Salamov, Asaf -- Fritz-Laylin, Lillian K -- Marechal-Drouard, Laurence -- Marshall, Wallace F -- Qu, Liang-Hu -- Nelson, David R -- Sanderfoot, Anton A -- Spalding, Martin H -- Kapitonov, Vladimir V -- Ren, Qinghu -- Ferris, Patrick -- Lindquist, Erika -- Shapiro, Harris -- Lucas, Susan M -- Grimwood, Jane -- Schmutz, Jeremy -- Cardol, Pierre -- Cerutti, Heriberto -- Chanfreau, Guillaume -- Chen, Chun-Long -- Cognat, Valerie -- Croft, Martin T -- Dent, Rachel -- Dutcher, Susan -- Fernandez, Emilio -- Fukuzawa, Hideya -- Gonzalez-Ballester, David -- Gonzalez-Halphen, Diego -- Hallmann, Armin -- Hanikenne, Marc -- Hippler, Michael -- Inwood, William -- Jabbari, Kamel -- Kalanon, Ming -- Kuras, Richard -- Lefebvre, Paul A -- Lemaire, Stephane D -- Lobanov, Alexey V -- Lohr, Martin -- Manuell, Andrea -- Meier, Iris -- Mets, Laurens -- Mittag, Maria -- Mittelmeier, Telsa -- Moroney, James V -- Moseley, Jeffrey -- Napoli, Carolyn -- Nedelcu, Aurora M -- Niyogi, Krishna -- Novoselov, Sergey V -- Paulsen, Ian T -- Pazour, Greg -- Purton, Saul -- Ral, Jean-Philippe -- Riano-Pachon, Diego Mauricio -- Riekhof, Wayne -- Rymarquis, Linda -- Schroda, Michael -- Stern, David -- Umen, James -- Willows, Robert -- Wilson, Nedra -- Zimmer, Sara Lana -- Allmer, Jens -- Balk, Janneke -- Bisova, Katerina -- Chen, Chong-Jian -- Elias, Marek -- Gendler, Karla -- Hauser, Charles -- Lamb, Mary Rose -- Ledford, Heidi -- Long, Joanne C -- Minagawa, Jun -- Page, M Dudley -- Pan, Junmin -- Pootakham, Wirulda -- Roje, Sanja -- Rose, Annkatrin -- Stahlberg, Eric -- Terauchi, Aimee M -- Yang, Pinfen -- Ball, Steven -- Bowler, Chris -- Dieckmann, Carol L -- Gladyshev, Vadim N -- Green, Pamela -- Jorgensen, Richard -- Mayfield, Stephen -- Mueller-Roeber, Bernd -- Rajamani, Sathish -- Sayre, Richard T -- Brokstein, Peter -- Dubchak, Inna -- Goodstein, David -- Hornick, Leila -- Huang, Y Wayne -- Jhaveri, Jinal -- Luo, Yigong -- Martinez, Diego -- Ngau, Wing Chi Abby -- Otillar, Bobby -- Poliakov, Alexander -- Porter, Aaron -- Szajkowski, Lukasz -- Werner, Gregory -- Zhou, Kemin -- Grigoriev, Igor V -- Rokhsar, Daniel S -- Grossman, Arthur R -- GM07185/GM/NIGMS NIH HHS/ -- GM42143/GM/NIGMS NIH HHS/ -- R01 GM032843/GM/NIGMS NIH HHS/ -- R01 GM042143/GM/NIGMS NIH HHS/ -- R01 GM042143-09/GM/NIGMS NIH HHS/ -- R01 GM060992/GM/NIGMS NIH HHS/ -- R01 GM062915-06/GM/NIGMS NIH HHS/ -- R37 GM030626/GM/NIGMS NIH HHS/ -- R37 GM042143/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):245-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932292" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*genetics/*physiology ; Animals ; *Biological Evolution ; Chlamydomonas reinhardtii/*genetics/physiology ; Chloroplasts/metabolism ; Computational Biology ; DNA, Algal/genetics ; Flagella/metabolism ; Genes ; *Genome ; Genomics ; Membrane Transport Proteins/genetics/physiology ; Molecular Sequence Data ; Multigene Family ; Photosynthesis/genetics ; Phylogeny ; Plants/genetics ; Proteome ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-09-06
    Description: Complementary chromatic adaptation in cyanobacteria acts through photoreceptors to control the biosynthesis of light-harvesting complexes. The mutant FdBk, which appears black, cannot chromatically adapt and may contain a lesion in the apparatus that senses light quality. The complementing gene identified here, rcaE, encodes a deduced protein in which the amino-terminal region resembles the chromophore attachment domain of phytochrome photoreceptors and regions of plant ethylene receptors; the carboxyl- terminal half is similar to the histidine kinase domain of two-component sensor kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kehoe, D M -- Grossman, A R -- New York, N.Y. -- Science. 1996 Sep 6;273(5280):1409-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution of Washington, 290 Panama Street, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8703080" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Amino Acid Sequence ; Apoproteins/*chemistry ; *Arabidopsis Proteins ; Bacterial Proteins/chemistry ; Cyanobacteria/*chemistry/genetics/physiology ; Genetic Complementation Test ; Light ; *Light-Harvesting Protein Complexes ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Photosynthetic Reaction Center Complex Proteins/*chemistry/genetics/metabolism ; Phytochrome/*chemistry ; *Plant Proteins ; Protein Kinases/chemistry ; Receptors, Cell Surface/*chemistry ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1985-11-01
    Description: The major light-harvesting complex in cyanobacteria and red algae, the phycobilisome, is composed of chromophoric and nonchromophoric polypeptides. Two linked genes encoding major chromophoric components, the polypeptide subunits of phycocyanin, were isolated from the cyanobacterium Fremyella diplosiphon. Transcripts from this phycocyanin subunit gene cluster were present as major species in the cyanobacterium grown in red light, but not in cultures maintained in green light. The genes for the subunits of the red light-induced phycocyanin were transcribed together (beta-phycocyanin followed by alpha-phycocyanin) on two messenger RNA species; one contained 1600 bases while the other had 3800 bases. The latter, which encompassed the smaller transcript, contained additional sequences extending from the 3' end of the coding region of the alpha-phycocyanin gene. It may encode other light-induced components of the phycobilisome. Since phycocyanin, which effectively absorbs red light, becomes a dominant constituent of the phycobilisome in red light, these different levels may reflect an important adaptive mechanism of these organisms to their environment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conley, P B -- Lemaux, P G -- Grossman, A R -- GM 33436-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1985 Nov 1;230(4725):550-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3931221" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cyanobacteria/*genetics ; Light ; Nucleic Acid Hybridization ; Phycobilisomes ; Phycocyanin/genetics ; RNA, Messenger/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 29 (1995), S. 231-288 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 13 (1990), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. The major light-harvesting complex in cyanobacteria and red algae is the phycobilisome, a macromolecular complex that is attached to the surface of the photosynthetic membranes. The phycobilisome is composed of a number of different chromophoric polypeptides called phycobiliproteins and nonchromophoric polypeptides called linker proteins. Several environmental parameters modulate the synthesis, assembly and degradation of phycobilisome components. In many cyanobacteria, the composition of the phycobilisome can change to accommodate the prevalent wavelengths of light in the environment. This phenomenon is called complementary chromatic adaptation. Organisms that exhibit complementary chromatic adaptation must perceive the wavelengths of light in the environment and transduce the light signals into a sequence of biochemical events that result in altering the activities of genes encoding specific phycobiliprotein and linker polypeptides. Other environmental parameters such as light intensity and nutrient status can also have marked effects on both the number and composition of the phycobilisomes. The major concern of this article is the molecular events involved in chromatic adaptation. Most of the information concerning this process has been gained from studies involving the filamentous cyanobacterium Fremyella diplosiphon. However, also briefly considered are some of the complexities involved in phycobilisome biosynthesis and degradation; they include post-translational modification of phycobilisome polypeptides, the coordinate expression of chromophore and apobiliprotein, the specific degradation of phycobilisomes when cyanobacteria are deprived of macronutrients such as nitrogen, sulphur and phosphorus, and the assembly of the individual phycobilisome components into substructures of the light harvesting complex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5176
    Keywords: brown algae ; Chromophyta ; gene transformation ; Macrocystis ; Phaeodactylum ; plastid protein import ; signal sequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In chromophytic algae the major light-harvesting complex is the fucoxanthin chlorophylla/c protein complex. Recently, we have cloned several highly related cDNA and genomic sequences encoding the fucoxanthin chlorophylla/c proteins from the diatomPhaeodactylum tricornutum. These genes are clustered on the nuclear genome. The sequences of the fucoxanthin chlorophylla/c proteins as deduced from the gene sequences have some similarity to the chlorophylla/b proteins associated with light-harvesting complexes of higher plants and green algae. Like the chlorophylla/b proteins of higher plants, the fucoxanthin chlorophylla/c proteins are synthesized as higher-molecular weight precursors in the cytoplasm of the cell and are transported into the plastids. However, the mode of transport into diatom plastids is very different from the mechanism involved in transporting proteins into the chloroplasts of higher plants and green algae. We focus here on the characteristics of the fucoxanthin chlorophylla/c proteins, the mode of transport of these proteins into plastids, the arrangement of the genes encoding these proteins, and efforts to utilize these genes to develop a DNA transformation system for diatoms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 252 (1996), S. 572-579 
    ISSN: 1617-4623
    Keywords: Bacillariophyta ; Biolistic transformation ; Phleomycin ; Reporter gene ; Selectable marker
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A nuclear transformation system has been developed for the diatomPhaeodactylum tricornutum using microparticle bombardment to introduce thesh ble gene fromStreptoalloteichus hindustanus into cells. Thesh ble gene encodes a protein that confers resistance to the antibiotics Zeocin and phleomycin. Chimeric genes containing promoter and terminator sequences from theP. tricornutum fcp genes were used to drive expression ofsh ble. Between 10–100 transformants were recovered/108 cells. Transformants were able to grow on at least 500 µg/ml of Zeocin, which is 10 times the amount necessary to kill wild-type cells. Based on Southern hybridizations thesh ble gene was present in 1–3 copies/transformant. Relative levels of correctly processed transcripts were correlated with the abundance of the Sh ble protein (present at 0.1–2.0 µg/mg total protein). Thecat reporter gene fused to afcp promoter could also be introduced by microparticle bombardment and was found to be highly expressed (average of 7.1 U/mg total protein). This work demonstrates that heterologous genes can be readily expressed inP. tricornutum. The development of selectable marker and reporter gene constructs provides the tools necessary for dissecting gene structure and regulation, and introducing novel functions into diatoms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1995-01-17
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...