ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-13
    Description: The global shortening of messenger RNAs through alternative polyadenylation (APA) that occurs during enhanced cellular proliferation represents an important, yet poorly understood mechanism of regulated gene expression. The 3' untranslated region (UTR) truncation of growth-promoting mRNA transcripts that relieves intrinsic microRNA- and AU-rich-element-mediated repression has been observed to correlate with cellular transformation; however, the importance to tumorigenicity of RNA 3'-end-processing factors that potentially govern APA is unknown. Here we identify CFIm25 as a broad repressor of proximal poly(A) site usage that, when depleted, increases cell proliferation. Applying a regression model on standard RNA-sequencing data for novel APA events, we identified at least 1,450 genes with shortened 3' UTRs after CFIm25 knockdown, representing 11% of significantly expressed mRNAs in human cells. Marked increases in the expression of several known oncogenes, including cyclin D1, are observed as a consequence of CFIm25 depletion. Importantly, we identified a subset of CFIm25-regulated APA genes with shortened 3' UTRs in glioblastoma tumours that have reduced CFIm25 expression. Downregulation of CFIm25 expression in glioblastoma cells enhances their tumorigenic properties and increases tumour size, whereas CFIm25 overexpression reduces these properties and inhibits tumour growth. These findings identify a pivotal role of CFIm25 in governing APA and reveal a previously unknown connection between CFIm25 and glioblastoma tumorigenicity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128630/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128630/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Masamha, Chioniso P -- Xia, Zheng -- Yang, Jingxuan -- Albrecht, Todd R -- Li, Min -- Shyu, Ann-Bin -- Li, Wei -- Wagner, Eric J -- CA166274/CA/NCI NIH HHS/ -- CA167752/CA/NCI NIH HHS/ -- GM046454/GM/NIGMS NIH HHS/ -- R01 GM046454/GM/NIGMS NIH HHS/ -- R01 HG007538/HG/NHGRI NIH HHS/ -- R01HG007538/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Jun 19;510(7505):412-6. doi: 10.1038/nature13261. Epub 2014 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA [2]. ; 1] Division of Biostatistics, Dan L Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, 77030 Texas, USA [2]. ; The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas 77030, USA. ; Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA. ; Division of Biostatistics, Dan L Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, 77030 Texas, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24814343" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; Carcinogenesis/*genetics/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Proliferation ; Gene Expression Profiling ; *Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Glioblastoma/*physiopathology ; HeLa Cells ; Heterografts ; Humans ; Male ; Mice ; *Polyadenylation ; RNA, Messenger/*metabolism ; Regression Analysis ; mRNA Cleavage and Polyadenylation Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1986-06-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-29
    Description: The reduced expression levels and functional impairment of global miRNAs are related to various human diseases, including cancers. However, relatively little is known about how global miRNA function may be upregulated. Here, we report that global miRNA function can be enhanced by Rho-associated, coiled-coil-containing protein kinase (ROCK) inhibitors. The regulation of miRNA function by ROCK inhibitors is mediated, at least in part, by poly(A)-binding protein-interacting protein 2 (PAIP2), which enhances poly(A)-shortening of miRNA-targeted mRNAs and leads to global upregulation of miRNA function. In the presence of a ROCK inhibitor, PAIP2 expression is enhanced by the transcription factor hepatocyte nuclear factor 4 alpha (HNF4A) through increased ROCK1 nuclear localization and enhanced ROCK1 association with HNF4A. Our data reveal an unexpected role of ROCK1 as a cofactor of HNF4A in enhancing PAIP2 transcription. ROCK inhibitors may be useful for the various pathologies associated with the impairment of global miRNA function.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-06
    Description: MiR-26 has emerged as a key tumour suppressor in various cancers. Accumulating evidence supports that miR-26 regulates inflammation and tumourigenicity largely through down-regulating IL-6 production, but the underlying mechanism remains obscure. Here, combining a transcriptome-wide approach with manipulation of cellular miR-26 levels, we showed that instead of directly targeting IL-6 mRNA for gene silencing, miR-26 diminishes IL-6 transcription activated by TNF-α through silencing NF-B signalling related factors HMGA1 and MALT1. We demonstrated that miR-26 extensively dampens the induction of many inflammation-related cytokine, chemokine and tissue-remodelling genes that are activated via NF-B signalling pathway. Knocking down both HMGA1 and MALT1 by RNAi had a silencing effect on NF-B-responsive genes similar to that caused by miR-26. Moreover, we discovered that poor patient prognosis in human lung adenocarcinoma is associated with low miR-26 and high HMGA1 or MALT1 levels and not with levels of any of them individually. These new findings not only unravel a novel mechanism by which miR-26 dampens IL-6 production transcriptionally but also demonstrate a direct role of miR-26 in down-regulating NF-B signalling pathway, thereby revealing a more critical and broader role of miR-26 in inflammation and cancer than previously realized.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-01-01
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...