ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-06-23
    Description: The mammalian hippocampus is crucial for episodic memory formation and transiently retains information for about 3-4 weeks in adult mice and longer in humans. Although neuroscientists widely believe that neural synapses are elemental sites of information storage, there has been no direct evidence that hippocampal synapses persist for time intervals commensurate with the duration of hippocampal-dependent memory. Here we tested the prediction that the lifetimes of hippocampal synapses match the longevity of hippocampal memory. By using time-lapse two-photon microendoscopy in the CA1 hippocampal area of live mice, we monitored the turnover dynamics of the pyramidal neurons' basal dendritic spines, postsynaptic structures whose turnover dynamics are thought to reflect those of excitatory synaptic connections. Strikingly, CA1 spine turnover dynamics differed sharply from those seen previously in the neocortex. Mathematical modelling revealed that the data best matched kinetic models with a single population of spines with a mean lifetime of approximately 1-2 weeks. This implies approximately 100% turnover in approximately 2-3 times this interval, a near full erasure of the synaptic connectivity pattern. Although N-methyl-d-aspartate (NMDA) receptor blockade stabilizes spines in the neocortex, in CA1 it transiently increased the rate of spine loss and thus lowered spine density. These results reveal that adult neocortical and hippocampal pyramidal neurons have divergent patterns of spine regulation and quantitatively support the idea that the transience of hippocampal-dependent memory directly reflects the turnover dynamics of hippocampal synapses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648621/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648621/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Attardo, Alessio -- Fitzgerald, James E -- Schnitzer, Mark J -- R21 AG038771/AG/NIA NIH HHS/ -- R21 MH092809/MH/NIMH NIH HHS/ -- England -- Nature. 2015 Jul 30;523(7562):592-6. doi: 10.1038/nature14467. Epub 2015 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] James H. Clark Center for Biomedical Engineering &Sciences, Stanford University, Stanford, California 94305, USA [2] Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA. ; James H. Clark Center for Biomedical Engineering &Sciences, Stanford University, Stanford, California 94305, USA. ; 1] James H. Clark Center for Biomedical Engineering &Sciences, Stanford University, Stanford, California 94305, USA [2] Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA [3] CNC Program, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26098371" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CA1 Region, Hippocampal/*cytology/*metabolism ; Dendritic Spines/*metabolism ; Endoscopy ; Kinetics ; Male ; Memory, Episodic ; Mice ; Neocortex/cytology/metabolism ; Neuronal Plasticity/*physiology ; Photons ; Pyramidal Cells/cytology/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Synapses/metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-02-12
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...